
Table (1): Comparison between Group I and Group III according to Birth weight.

	Studied groups	Group I*	Group II**	Total
Birth weight		(n= 150)	(n= 150)	(n=300)
Minimum		1150	1150	1150
Maximum		3150	5050	5050
$Mean \pm SD$		2411	2454.3	2432.7
		±889.2	±856.3	±871.7
	t	0.4		
	p	>(

^{*} Group I: before application of infection control program

This table shows that, the difference in the mean birth weight between the two groups is of no statistical significance

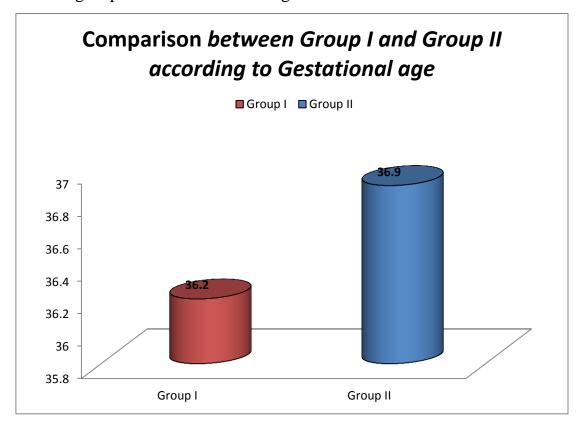

^{**} Group II : after application of infection control program

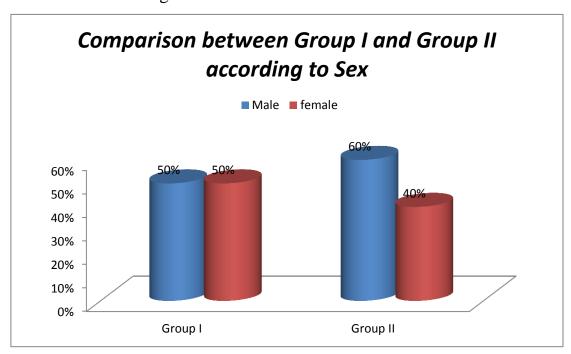
Table (2): Comparison between Group I and Group II according to Gestational age:

Studied groups	Group I*	Group II**	Total
Gestational age	(n= 150)	(n= 150)	(n=300)
Mean	36.2	36.9	36.5
Minimum	28	29	28
Maximum ±S D	40 ±3.9	40±3.1	40±3.5
t	1	1.7	
p	>0.05		

^{*} Group I: before application of infection control program

This table shows that, the difference in the mean *Gestational age* between the two groups is of no statistical significance

^{**} Group II: after application of infection control program


Table (3): Comparison between Group I and Group II according to Sex

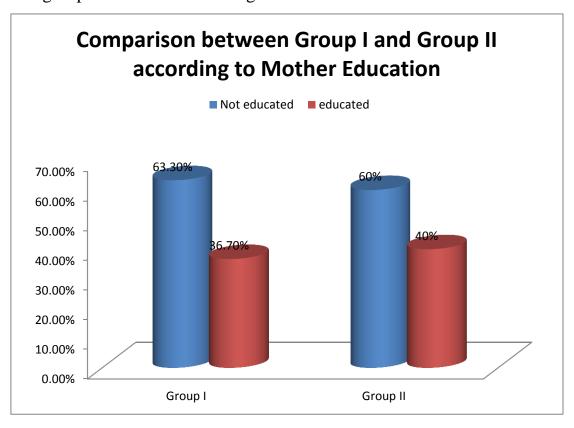
	Studied groups	Group) I*	Group) II**	Total	
		(n= 150)		(n= 150)		(n=300)	
Sex		No.	%	No.	%	No.	%
Male		75	50%	90	60%	165	55%
female		75	50%	60	40%	135	45%
Total		150	100%	150	100%	300	100%

^{*} Group I: before application of infection control program

$$X^{2=} 2.6$$

This table shows that, male: female ratio is equal in group I (before application of infection control program), while the group II (after application of infection control program) shows male predominance, male: female ratio is 60% to 40%, the difference between the two groups is of no statistical significance

^{**} Group II : after application of infection control program


Table (4): Comparison between Group I and Group II according to Mother Education

Studied groups	Group I*		Group II**		Total	
	(n= 150)		(n= 150)		(n=300)	
Mother	No.	%	No.	%	No.	%
Education						
Not educated	95	63.3%	90	60%	185	61.7%
educated	55	36.7%	60	40%	115	38.3%
Total	150	100%	150	100%	300	100%

^{*} Group I: before application of infection control program

$$X^{2=}0.2$$

This table shows that, the difference of the percentage of newborn belonging to educated mothers as well as non educated mothers in the two groups is of no statistical significance

^{**} Group II : after application of infection control program

Table (5): comparison between Group I and Group II according to mode of delivery

Studied groups	Group I*		Group II**		Total	
	(n= 150)		(n= 150)		(n=300)	
Mode of	No.	%	No.	%	No.	%
delivery						
NVD	110	73.3%	95	63.3%	220	73.3%
CS	40	26.7%	55	36.7%	80	26.7%
Total	150	100%	150	100%	300	100%

^{*} Group I: before application of infection control program

$$X^{2=} 3.02$$

This table shows that, the percentage of newborn delivered by NVD (normal vaginal delivery) and CS (caesarian section) in the group I is estimated to be 73.3% and 26.7% respectively. While percentage of the NVD and CS in the group II is estimated to be 63.3% and 36.7% respectively. These differences are of no statistical significance

^{**} Group II: after application of infection control program

Table (6): Distribution of the studied neonates before application of infection control program as regards the presence of nosocomial infection

Studied gp.		
Presence of infection	Number	percent
Community Infection		
cases	40	26.7%
Nosocomial infection		
cases	50	33.3%
	60	
Free		40%
Total	150	100%

This table shows that, the percentage of infection in the studied group is 60%; nosocomial infection is diagnosed in 33.3 % of the studied neonates before application of infection control program. While, community acquired type is detected in 26.7% of cases

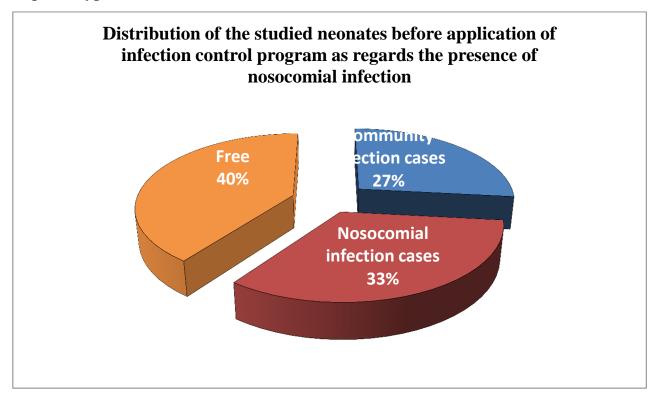


Table (7): Distribution of the studied neonates after application of infection control program as regard the presence of infection:

Studied gp.	Number	percent
Presence of infection		
Community Infection	35	23.3%
cases		
Nosocomial infection	15	10%
cases		
Free	100	66.7%
Total	150	100%

This table shows that, the overall percentage of infectivity is 33.3%. Nosocomial infection is diagnosed in 10 % of the studied neonates after application of infection control program. While community acquired type is detected in 23.3% of cases.

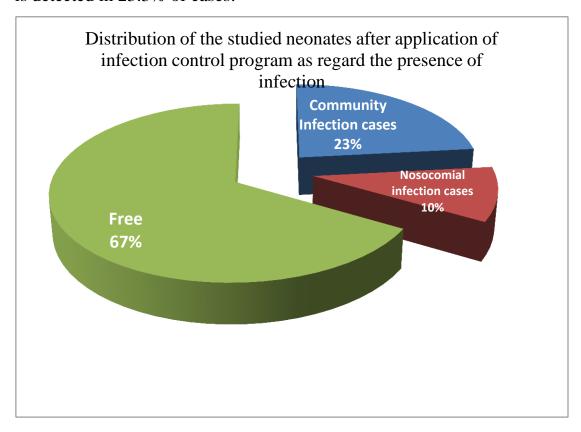


Table (8): Comparison between Nosocomial infection rates before and after the application of infection control program.

Frequency	No.	%
Group		
Group I	50	33.3%
(n=150)		
Group II	15	10%
(n=150)		
Z	4.9	
p	<0.001	

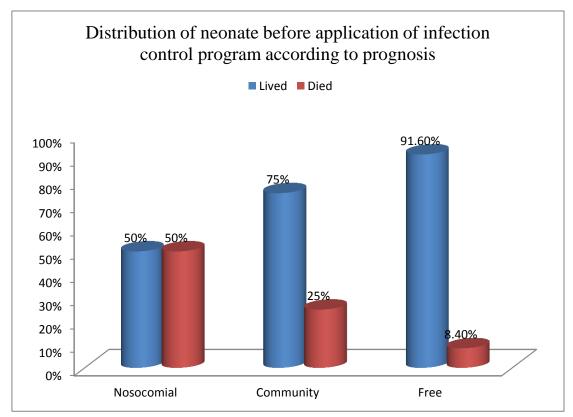

This table shows that, the difference in the percentage of detection of nosocomial infection in group I (before application of infection control program) (33.3%) and in group II (after application of infection control program) (10%) is of statistical significance

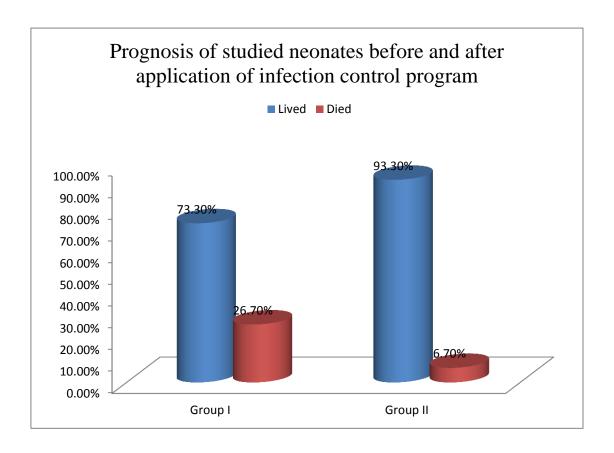
Table (9): Distribution of neonate before application of infection control program according to prognosis.

Infection	Nosocoi	Nosocomial		Community		Free		Total	
Mortality	No.	%	No.	%	No.	%	No.	%	
Lived	25	50%	30	75%	55	91.6%	110	73.3%	
Died	25	50%	10	25%	5	8.4%	40	26.7%	
Total	50	100%	40	100%	60	100%	150	100%	

^{*} Group I: before application of infection control program

This table shows that, the highest percentage of deaths is encountered among neoborn diagnosed as having nosocomial infection (50%)

^{**} Group II: after application of infection control program


Table (10): Prognosis of studied neonates before and after application of infection control program.

	Group I*		Group II**			
	(n= 150)		(n= 150)		Total	
	No.	%	No.	No.	No.	%
Lived	110	73.3%	140	93.3%	250	83.3%
Died	40	26.7%	10	6.7%	50	16.7%
Total	150	100%	150	100%	300	100

^{*} Group I: before application of infection control program

$$X^2 = 20.2$$

This table shows that the mortality rate in group I (before the application of the infection control program) is estimated to be 26.7%. While the mortality rate in group II (after application of infection control program) is 6.7%. The difference is of statistical significance.

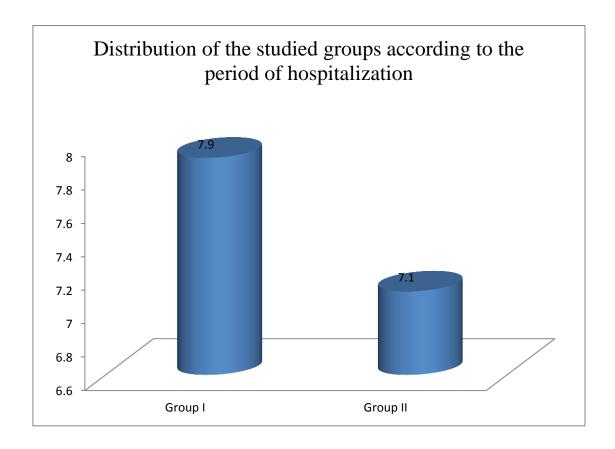

^{**} Group II : after application of infection control program

Table (11): Distribution of the studied groups according to the period of hospitalization:

St. group	Group I*	Group II**
Period of	(n=150)	(n=150)
hospital stay		
_		
$X \pm SD$	7.9±7.1	7.1±5.02
t	1.2	
p	>0.05	

^{*} Group I: before application of infection control program

These table shows that, the mean Period of hospital stay in group I (before the application of the infection control program) is 7.9 ± 7.1 and that in group II (after application of infection control program) is 7.1 ± 5.02 . The difference is of no statistical significance.

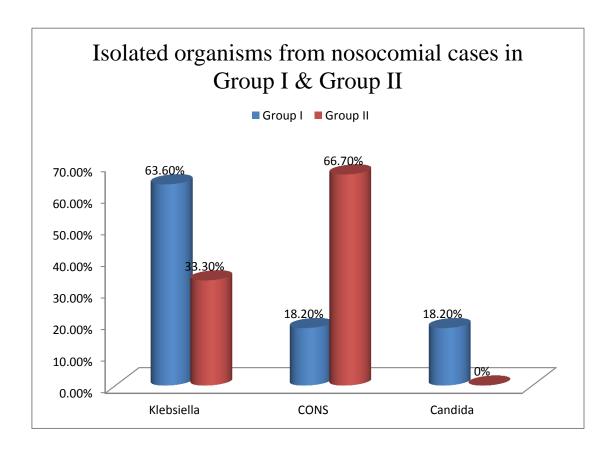

^{**} Group II : after application of infection control program

Table (12): Isolated organisms from nosocomial cases in Group I & Group II:

Group	Group I*		Group II**			
	(n=150)		(n=150)		Total	
Organism	No.	%	No.	%	No.	%
Klebsiella	35	63.6%	5	33.3%	40	57.1
CONS	10	18.2%	10	66.7	20	28.6
Candida	10	18.2%	0	0%	10	14.3
Total***	55	100%	15	100%	70	100%

^{*} Group I: before application of infection control program

This table shows that the most frequent organism isolated is Klebsiella (57.1%) followed by CONS (18.2%) then candida (14.3%).

^{**} Group II : after application of infection control program

^{***}The total strains in Group I (55) is > the total cases (50) due to 5 case of mixed infection. This table shows that *Klebsiella pneumoniae* was the most predominant pathogen in Group I (63.6%). In Group III, however, CONS was the most predominant pathogen.

Table (13): Correlation between occurrences of Nosocomial infection with other variables.

Corr. Coefficient Variable	r	P Value
Mortality	0.5	< 0.05
Period of hospital stay (in days)	0.3	<0.05
Artificial Respiration	0.4	<0.05
Peripheral venous catheter	0.4	<0.05
CVC/umbilical	0.5	<0.05
O2 box nasal-prongs	0.1	>0.05
BLOOD Transfusion.	0.4	<0.05
PROM	-0.09	>0.05
BIRTH Weight.	-0.4	<0.05
Gestational AGE	-0.5	<0.05
Mother Education	0.049	>0.05
Multiple pregnancy	0.094	>0.05

This table shows that nosocomial infection shows direct positive correlation of statistical significance with the increase in the hospital stay days, artificial respiration, peripheral venous catheter, CVC/umbilical, blood transfusion. It shows inverse correlation of statistical significance with birth weight and gestational age.

Table (14): Correlation between Community acquired infection with other variables:

Corr. Coefficient	r	P value
Variable		
Mortality	- 0.05	>0.05
PROM	0.57	< 0.05
BIRTH W.	-0.03	>0.05
GEST AGE	- 0.07	>0.05
Mother Education	-0.02	>0.05
Multiple gestation	-0.02	>0.05
Mode of delivery	0.08	>0.05
Place of birth	-0.04	>0.05

This table shows that that *Community acquired* infection shows direct correlation of statistical significance with premature rupture of membrane (PROM).

Table (15): Comparison between neonates with nosocomial infection and neonates without nosocomial infection according to sex:

Sex	Male		Fen	Total	
	No.	%	No.	%	
Nosocomial infection					
Absent	85	53.1	75	46.9	160
Present	35	53.9	30	46.1	65
Total	120	53.3	105	46.7	225

 $X^2 = 0.01$

p > 0.05

This table shows that, the difference of nosocomial infection between males (53.9%) and females (46.1%), is of no statistical significance.

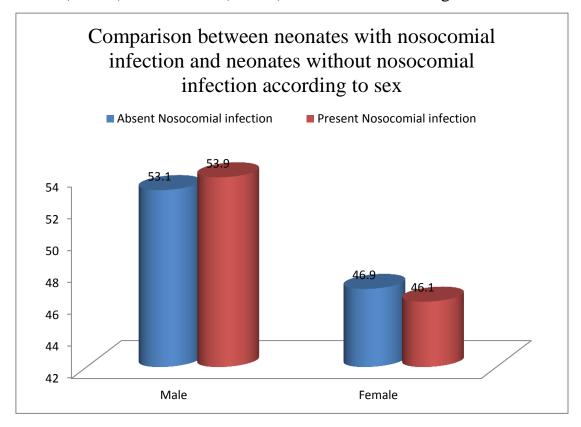


Table (16): Comparison between neonates with nosocomial infection and neonates without nosocomial infection according to artificial respiration:

Artificial respiration	Artificial		No artificial		Total
	respiration		respiration		
Nosocomial infection	No.	%	No.	%	
Absent	10	6.3	150	93.7	160
Present	45	69.2	20	30.8	65
Total	55	24.4	170	75.6	225

$$X^2 = 95.9$$

This table shows that artificial respiration is administered to 69.2% of neonates diagnosed as nosocomial infection. While artificial respiration is administered to 6.3% of those free of nosocomial infection. This difference is of statistical significance.

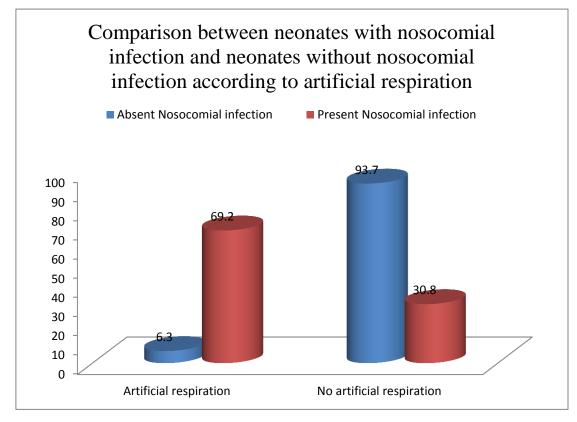


Table (17): Comparison between neonates with nosocomial infection and neonates without nosocomial infection according to peripheral cannula insertion:

Peripheral cannula	perip	heral	No per	ripheral	Total
	can	nula	can	nula	
Nosocomial infection	No.	%	No.	%	No.
Absent	65	40.6	95	59.4	160
Present	50	76.9	15	23.1	65
Total	125	55.6	100	44.4	225

$$X^2 = 47.9$$

This table shows that 67.9% of neonates diagnosed as nosocomial infection have peripheral venous cannula compared to 40.6% of neonates free of nosocomial infection. This difference is of statistical significance.

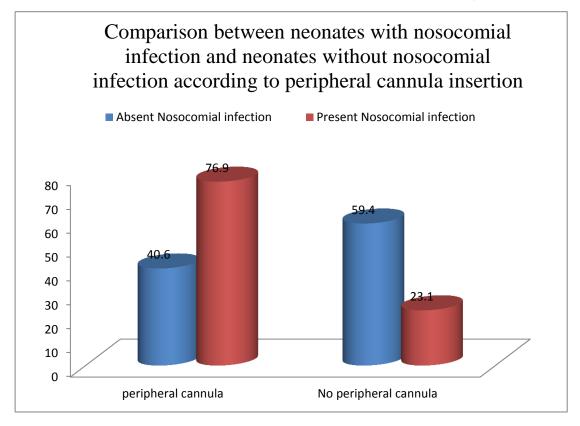


Table (18): Comparison between neonates with nosocomial infection and neonates without nosocomial infection according to central venous cannula (CVC) insertion.

CVC	CVC		No CVC		Total
	No.	%	No.	%	No.
Nosocomial infection					
Absent	25	15.6	135	84.4	160
Present	60	92.3	5	7.7	65
Total	85	37.8	140	62.2	225

$$X^2 = 112.4$$

This table shows that CVC is performed in 92.3% of neonates diagnosed as nosocomial infection while this maneuver is performed only in 15.6% of neonates without nosocomial infection. This difference is of statistical significance.

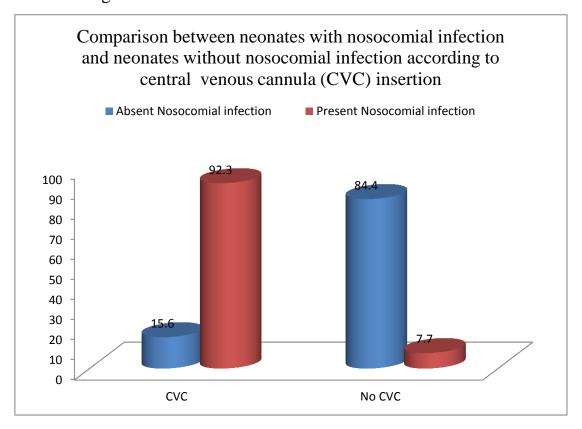


Table (19): Comparison between neonates with nosocomial infection and neonates without nosocomial infection according to O2 box nasal-prongs.

O2 box	O2 box	k nasal-	No O	2 box	Total
	pro	ongs	nasal-	prongs	
Nosocomial infection	No.	%	No.	%	No.
Absent	45	28.1	115	71.9	160
Present	35	53.8	30	46.2	65
Total	80	35.6	145	64.4	225

$$X^2 = 12.9$$

This table shows that O2 box nasal-prongs is administered to 53.8% of neonates diagnosed as nosocomial infection. While, this maneuver is performed only in 28.1% of neonates without nosocomial infection. This difference is of statistical significance.

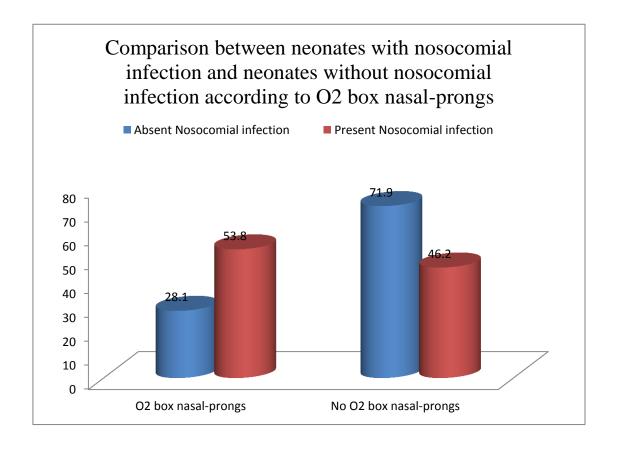


Table (20): Comparison between neonates with nosocomial infection and neonates without nosocomial infection according to mode of delivery:

Mode of delivery	CS		NVD		Total
	No.	%	No.	%	No.
Nosocomial infection					
Absent	50	31.3	110	68.7	160
Present	17	26.2	48	73.8	65
Total	67	29.8	158	70.2	225

 $X^2 = 0.4$

p > 0.05

This table shows that, neonates diagnosed as having nosocomial infection delivered by normal vaginal delivery is estimated to be73.8%. This percentage is of no statistical significance if compared with those delivered by caesarian section (26.2%).

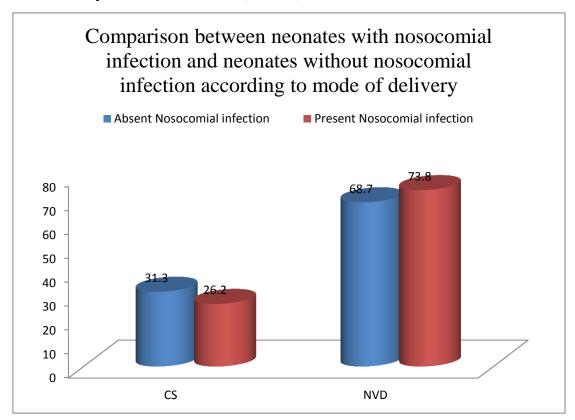


Table (21): Comparison between neonates with nosocomial infection and neonates without nosocomial infection according to premature rupture of membrane (PROM).

PROM	PROM		No PROM		Total
	No.	%	No.	%	No.
Nosocomial infection					
Absent	5	3.1	155	96.9	160
Present	5	7.7	60	92.3	65
Total	10	4.4	215	95.6	225

$$X^2 = 1.7$$

This table shows that, only 7.7% of the infected group belonging to mother with PROM. While 3.1% of neonates diagnosed as having no nosocomial infection were belonging to mothers has PROM. This difference is of no statistical insignificance.

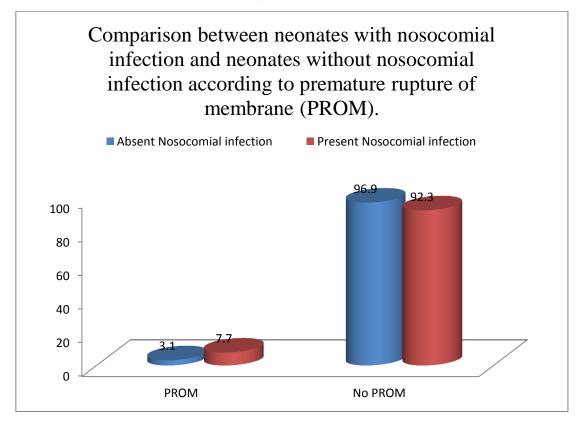


Table (22): Comparison between neonates with nosocomial infection and neonates without nosocomial infection according to blood transfusion:

B. Transfusion	Blood		No blood		Total
	transfusion.		transfusion.		
	No.	%	No.	%	No.
Nosocomial infection					
Absent	10	6.3	150	93.7	160
Present	36	53.8	29	46.2	65
Total	35	15.6	190	84.4	225

$$X^2 = 62.5$$

p < 0.05

This table shows that, about 53.8% of the neonates who acquire nosocomial infection receive blood transfusion. While 6.3% of neonates having no nosocomial infection receive blood transfusion. This difference is of statistical significance.

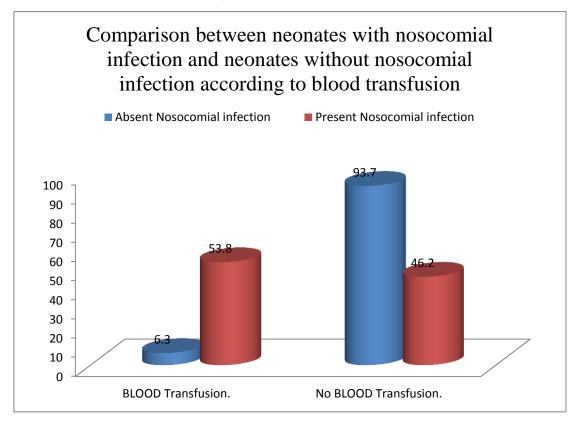


Table (23): Comparison between neonates with nosocomial infection and neonates without nosocomial infection according to Mother Education:

Education	Educated		Not Educated		Total
	No.	%	No.	%	No.
Nosocomial infection					
Absent	87	54.4	73	45.6	160
Present	34	52.3	31	47.7	65
Total	121	53.8	104	46.2	225

 $X^2 = 0.1$

p > 0.05

This table shows that the difference in the rate of occurrence of nosocomial infection among neonates of educated mothers (52.3%) and non educated mothers (47.7%) has no statistical significance

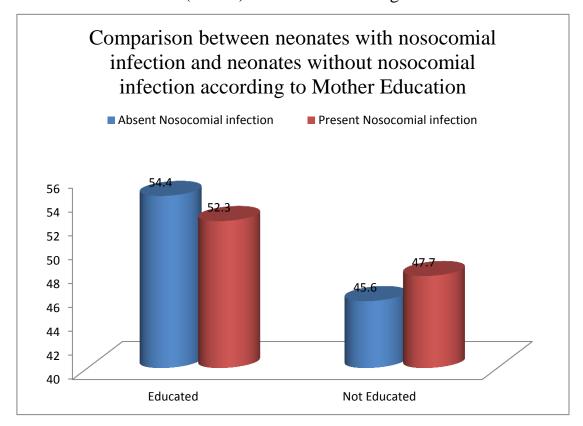


Table (24): Comparison between Nosocomially infected neonates and non nosocomially infected neonates according to Birth Weight:

NI	Present	Absent
	(n=65)	(n=160)
Birth weight (gms)		
_		
X±SD	1796.9 ±774.1	2708.4 ±693.9
t	8.6	
p	< 0.001	

This table shows that lower difference in birth weight of infected group if compared to noninfected group is of statistical significance.

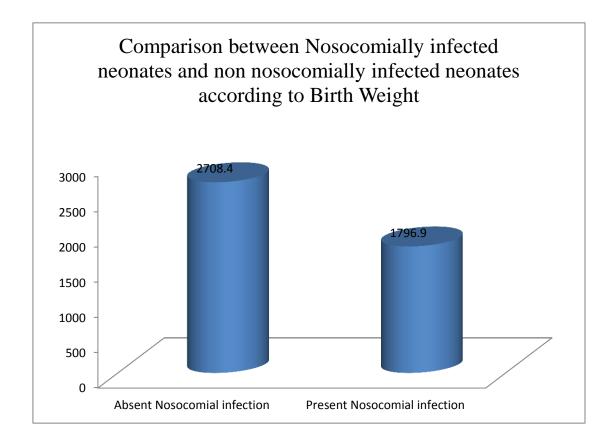


Table (25): Comparison between Nosocomially infected neonates and non nosocomially infected neonates according to gestational age:

NI	Present	Absent
	(n=65)	(n=160)
G.A (in weeks)		
_		
X±SD	33.03±3.7	38.1 ± 2.3
t	10.4	
p	< 0.001	

This table shows that, difference in gestational age of infected group compared with noninfected group is of statistical significance.

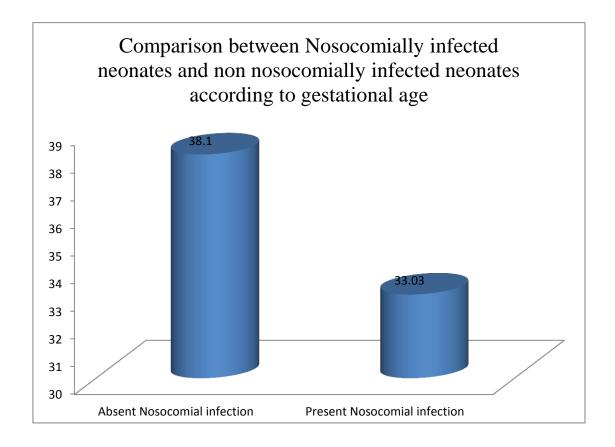
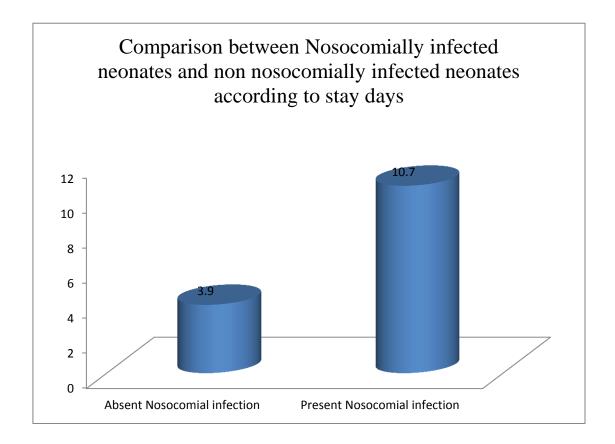



Table (26): Comparison between Nosocomially infected neonates and non nosocomially infected neonates according to stay days:

NI	Present	Absent
Period of	(n=65)	(n=160)
hospital stay days		
_ X±SD	10.7±3.9	3.9±1.4
t	19.2	
p	< 0.001	

This table shows that higher difference in Period of hospital stay days of the infected group compared with that of noninfected group is of statistical significance

