

Figure (8): Example of a ROC curve

Each point on the ROC plot represents a sensitivity/specificity pair corresponding to a particular decision threshold. A test with perfect discrimination (no overlap in the two distributions) has a ROC plot that passes through the upper left corner (100 % sensitivity, 100 % specificity). Therefore, the closer the ROC plot is to the upper left corner, the higher the overall accuracy of the test (**Zweig and Camphell, 1993**).

Criterion value indicates the cut off point corresponding with the best accuracy of the test (minimal false negative and false positive results).

Results

Table (2): Main clinical, hormonal and ultrasonographic features in controls and in patients with PCOS

Group	PCOS (n=30)	Controls (n=20)	P
Hormone	$Mean \pm SD$	$Mean \pm SD$	
Age (Y)	29.4± 4.2	30.2± 3.5	>0.05
BMI (kg/m2)	29.3±3.4	22.8±2.7	<0.001*
AMH (ng/ml)	10.5±4.5	4.1±1.9	<0.001*
LH (mIU/ml)	9.2±2.12	4.6±1.1	<0.01
FSH (mIU/ml)	5.0±0.9	5.8±0.8	> 0.05
LH/FSH ratio	1.6±0.3	0.8±0.2	<0.001*
Testosterone (nmol/L)	2.5±0.8	1.5±0.6	<0.001*
2-to 9-mm follicle no.	14.7±3.4	4.8±1.7	<0.001*

Table (1) shows that there was a statistical significant increase between the mean AMH (P<0.001), LH (P<0.01), Testosterone (P<0.001) level in serum of patients with PCOS compared to the control group.

There was statistical significant increase in the LH/FSH ratio (P<0.001) in patients with PCOS compared to the control group.

There was statistical significant increase in the BMI (P<0.001) in patients with PCOS compared to the control group.

There was statistical significant increase in the 2-to 9-mm follicle no. (P>0.001) in patients with PCOS compared to the control group.

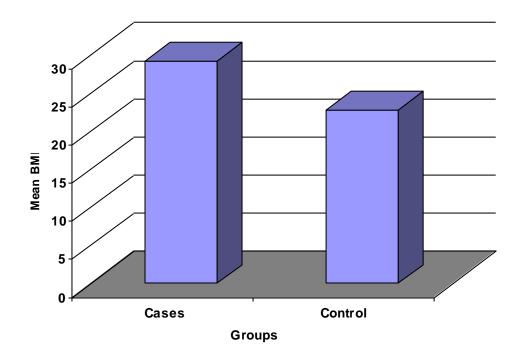


Figure (9): Mean BMI in case and control groups

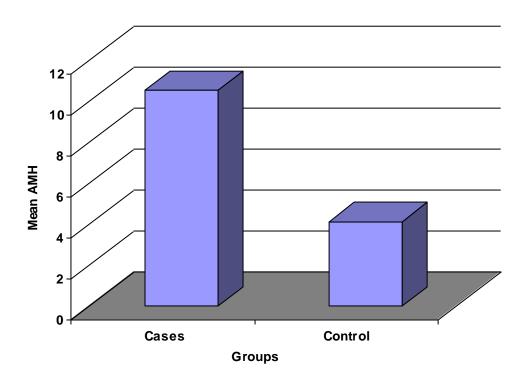


Figure (10): Mean AMH in case and control groups

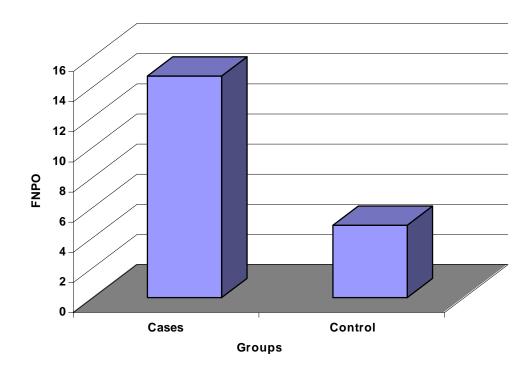


Figure (11): Mean FNPO in case and control groups

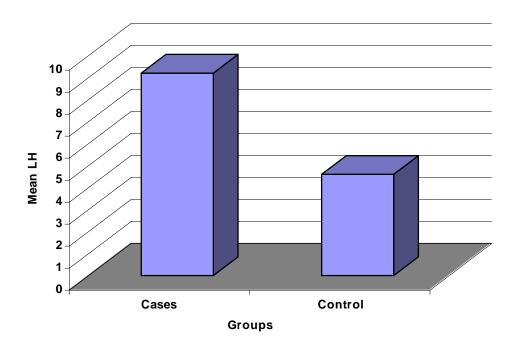


Figure (12): Mean LH in case and control groups

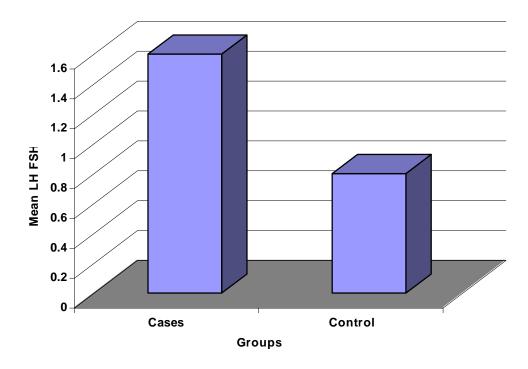


Figure (13): Mean LH/FSH ratio in case and control groups

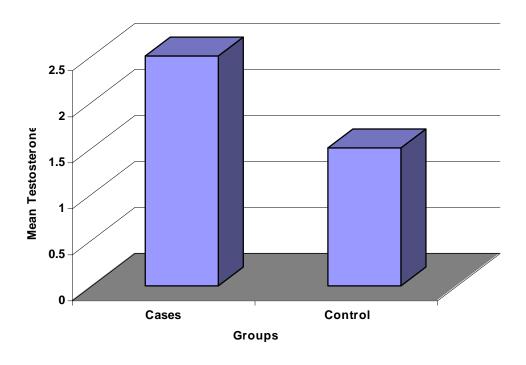


Figure (14): Mean Testosterone in case and control groups

Table (3): Correlation between AMH with other parameters in PCOS: (n=30)

	AMH	
	Pearson Correlation (r)	P
Age	-0.806	<0.001
BMI	-0.412	<0.05
LH	0.289	>0.05
FSH	-0.583**	<0.001
LH/FSH ratio	0.211	>0.05
Testosterone	0.678**	<0.001
2-to9-mm follicle no.	0.833	<0.001

There is a significant negative correlations between serum level of AMH and age (P<0.001, r=-0.806), and between serum level of AMH and BMI (P<0.05, r=0.412) (figure 16).

There is a significant positive correlations between serum level of AMH and FNPO (P<0.001, r=0.833) (figure 15).

There is a significant negative correlation between serum level of AMH and serum level of FSH (P<0.001, r=-0.583) (figure 17), where as there is a significant positive correlations between serum level of AMH and serum level of Testosterone (P<0.001, r=0.678) (figure 18).

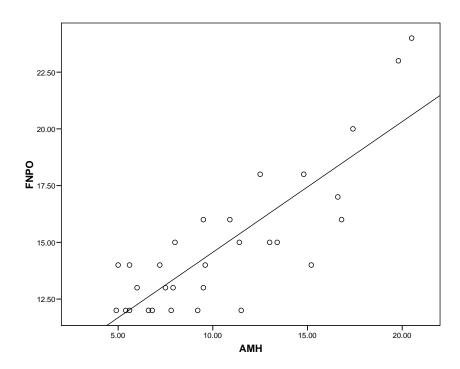


Figure (15): Correlation between AMH and FNPO in PCOS cases

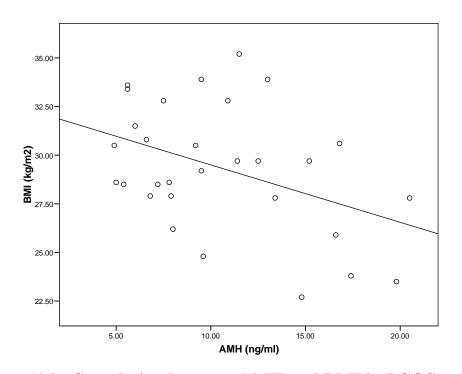


Figure (16): Correlation between AMH and BMI in PCOS cases

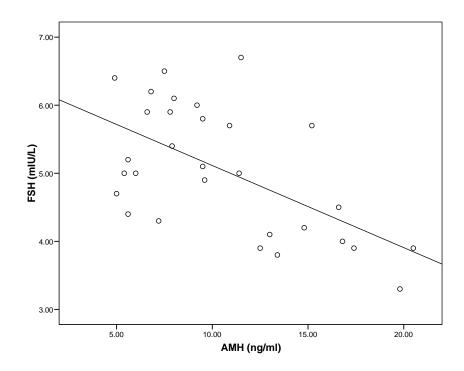


Figure (17): Correlation between AMH and FSH in PCOS cases

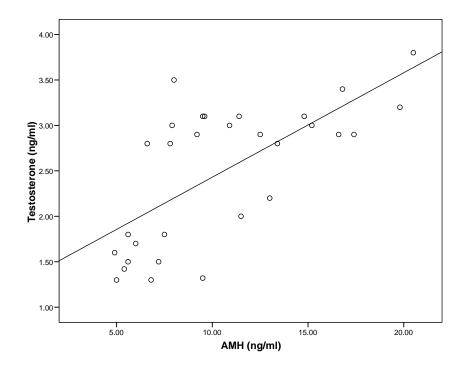


Figure (18): Correlation between AMH and Testosterone in PCOS cases

Table (4): Correlation between AMH with other parameters in Controls: (n=20)

	AMH		
	Pearson Correlation (r)	P	
Age	-0.489	<0.05	
BMI	-0.219	>0.05	
LH	0.237	>0.05	
FSH	-0.147	>0.05	
LH/FSH ratio	0.212	>0.05	
Testosterone	0.291	>0.05	
2-to-9mm follicle no.	0.166	>0.05	

Table (4) show correlations between serum levels of AMH and LH, FSH, Testosterone in control group:

There is a significant negative correlations between serum level of AMH and age (P<0.05, r=-0.489).

There is no significant correlation between serum level of AMH and BMI, LH, FSH, LH/FSH ratio, Testosterone, FNPO in control group.

Table (5): Serum AMH levels in patients with PCOS according to their menstrual cycles

	Regular	Oligoamenorrhea	Amenorrhea	P
	cycles			
NO. of patients	8	17	5	
AMH	7.2±2.0	10.3±3.6	16.5±3.9	<0.01

In PCOS patients, the mean serum level of AMH differed significantly (P< 0.01) between those presenting either with amenorrhea (16.5 ± 3.9) , oligoamenorrhea (10.3 ± 3.6) or regular cycles (7.2 ± 2.0) .

Table (6): Serum AMH levels in PCOS patients with irregular cycles (n=22) according to the presence or the absence of hyperandrogenism (HA)

	+ <i>HA</i>	-НА	P
NO.of pt	18	4	
AMH	12.7±4.2	7.5±2.3	<0.001

In PCOS patients with abnormal cycles (n= 22), the AMH levels varied significantly (P<0.001) according to the presence of hyperandrogenism (12.7 \pm 4.2) or the absence of hyperandrogenism (7.5 \pm 2.3).

Receiver Operating Characteristic (ROC) curve:

ROC curve analysis was done to test diagnostic potency of AMH assay in PCOS.

It was found that AMH at a certain value 7.9 (ng/ml) had specificity of 85 %, and sensitivity of 64%, and the area under the curve was 0.813 (0.696-0.930) (fig 19.).

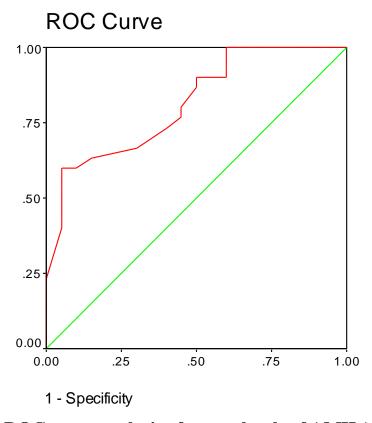


Figure (19): ROC curve analysis of serum levels of AMH (ng/ml).