TABLE OF CONTENTS

Item	Page
	No.
Introduction	1
Aim of the work	3
Review of literature	
- Anatomy of urinary tract	4
- Technique of MDCT.	22
- Methods of investigation of hematuria.	39
- Pathology of hematuria and role of MDCT urography in	47
its evaluation	
Patients and methods.	91
Results	98
Discussion	
Summary	157
References	161
Arabic summary	

List of figures

No	Figure title	Page
1-	Gross section of the kidney	6
2-	The renal collecting system	6
3-	normal anatomy of the renal arteries	8
4-	normal anatomy of the renal veins	9
5-	normal MDCT scan of urinary system	13
6-	CT urographic MIP image shows normal anatomy of The	16
	urinary collecting systems and ureters	
7-	Fundus of the bladder with the vesiculae seminalis	17
8-	Unenhanced CT scan through a normal bladder	18
9-	The male urethra and its parts	20
10-	The female bladder and urethra	21
11-	Contrast-enhanced phases of the kidney on multi-slice CT	25
	in a normal subject	
12-	Variety of reformatted image types can be used to display	34
	the volumetric data set obtained with multi-slice CTU	
13-	Multislice CT urography image of hematuria secondary	52
	to a transitional cell carcinoma of left ureter	
14-	42-year-old man underwent Multislice CT urography	53
	examination for hematuria	
15		54
13	Transitional cell carcinoma of the renal pelvis and	34
	ureteral perforation that occurred during ureteroscopy	
16	Multislice CT urography evaluation of macroscopic	55
	hematuria secondary to transitional cell carcinoma of	
	urinary bladder.	
4-		56
17	Transitional cell carcinoma of the bladder demonstrates	30
	a papillary mass in the right side of the bladder.	

No	Figure title	Page
18	RCC; nephrographic-phase image shows a large	59
	necrotic tumor in the left kidney with perinephric	
	infiltration (arrow).	
19	(A) Contrast-enhanced CT axial image of the kidneys	62
	shows a large left renal tumor (B) left gonadal vein	
	dilatation secondary to a large left RCC	
20	Ruptured angiomyolipoma with a history of tuberous	64
	sclerosis	
21	Acute pyelonephritis and abscess	67
22	Xanthogranulomatous pyelonephritis	68
23	(A) Contrast-enhanced coronal CT image demonstrates	70
	a hydatid cyst in the left kidney. (B) Axial contrast-	
	enhanced CT image demonstrates septated cysts in	
	liver and left kidney	
24	Nonenhanced CT scan demonstrating(A) Tuberculous	71
	left renal pelvic stricture (B) Left renal tuberculosis	
25	Non enhanced CT scans demonstrating bladder	72
	schistosomiasis	
26	Unenhanced Multislice CT urography image	75
	demonstrates left mid-ureteral calculus (A) with "tissue-	
	rim sign" (arrow) (B) with minimal perinephric fat	
	stranding (arrows)	
27	Right ureteral stone.	78
28	Papillary necrosis	79

No	Figure title	Page
29	Autosomal dominant polycystic kidney disease	80
30	Renal artery stenosis in a patient with Takayasu disease	82
31	Renal artery stenosis with hypertension	82
32	RCC with tumoral extension into the leftrenal vein	84
33	Arteriovenous fistula	86
34	Nutcracker syndrome	88
35	CT urography shows an obstructed upper pole	89
	moiety in a duplex kidney.	
36	Incidentally discovered UPJO in a 36-year-old	90
	man without crossing vessels at CT	