TABLE OF CONTENTS

CHAPTER 1	1
INTRODUCTION	1
1.1 Background	1
1.2 Relevance	1
1.3 Objective and scope	4
1.4 Outline of the thesis	5
CHAPTER 2	6
LATERATURE REVIEW	6
2.1 General	6
2.2 Historical work	6
2.3 Dynamic analysis of wind force	7
2.4 Pressure measurements system	15
2.5 Full scale measurements	16
2.6 Analytical work	16
2.7 Numerical work	25
CHAPTER 3	29
NUMERICAL MODELING AND EXPRIMENTAL VALIDATION	29
3.1 General	29
3.2 Rolex tower case study	30
3.2.1 Characteristics of the Rolex tower building	30
3.2.2 Experimental test description and results of the Rolex	
tower building	34
3.2.2.1 Study model and Surrounding	34
3.2.3.2 Upwind Profiles	34
3.2.3.3 Wind climate	34
3.2.3.4 Methodology	35
3.2.3.5 The experimental along-wind-induced loads	38
3.2.3 Numerical model description and results of the Rolex tower building	42
3.2.3.1 Theoretical background.	42

3.2.3.2 Computational domain and mesh arrangement
3.2.3.3 Boundary conditions
3.2.3.3.1 Velocity profile in the inlet
3.2.3.3.2 Turbulence intensity
3.2.3.4 Turbulence model
3.2.3.5 Numerical test duration and time steps
3.2.3.6. Results and post-test analysis50
3.2.3.6.1 Results for wind in X-direction50
3.2.3.6.1.1 Display of velocity values and stream lines for
wind in X-direction
3.2.3.6.1.2 Display of time histories of force and moment at
base for wind in X-direction
3.2.3.6.2 Results for wind in Y-direction54
3.2.3.6.2.1 Display of velocity values and stream lines for
wind in Y-direction54
3.2.3.6.2.2 Display of time histories of force and moment at
base for wind in Y-direction
3.2.3.6.3 The post-test analysis of the integrated forces and moments
obtained from the CFD model
3.2.3.6.3.1 Theoretical background
3.2.3.6.3.2 Sample of calculations of the peak force Fx(max)at
Z=H64
3.2.3.6.3.3 Sample of calculations of the peak force Fy(max)at
Z=H73
3.2.4 Analytical analysis calculations and results of the Rolex tower building82
3.2.4.1 General82
3.2.4.2 Analytical analysis calculations and results of the Rolex tower building
according to ASCE7-200582
3.2.4.3 Analytical analysis calculations and results of the Rolex tower building
according to NBC-200593
3.2.4.4 Analytical analysis calculations and results of the Rolex tower building

according to AS/NZS1170.2-2002	101
3.2.4.5 Analytical analysis calculations and results of the Rolex tower b	ouilding
according to ECP 201-2008	109
3.2.5. Comparative study between experimental, numerical, and analytical resu	ılts of
the Rolex tower building	
CHAPTER 4	
PARAMETRIC STUDY	123
4.1 General	123
4.2 Unchanged parameters	123
4.3 Studied parameters	124
4.4 Results and discussions	126
4.4.1 Effect of Fundamental Period (T) in percent of difference (P.O.D	.) between
numerical model and ASCE7-2005 evaluated base shear and overturning	ng moment
	131
4.4.1.1 Comments on results of effect of Fundamental Period (T) on	
P.O.D	138
4.4.2 Effect of plan aspect ratio (B/L) in percent of difference (P.O.D.)	between
numerical model and ASCE7-2005 evaluated base shear and overturning	ng moment
	_
4.4.2.1 Comments on results of effect of plan aspect ratio (B/L) on	
P.O.D	143
4.4.3 Effect of building height (H) in percent of difference (P.O.D.) bet	
numerical model and ASCE7-2005 evaluated base shear and overturning	
	_
4.4.3.1 Comments on results of effect of building height (H) on	
P.O.D.	1/18
4.4.4 Effect of terrain roughness in percent of difference (P.O.D.) betw	
numerical model and ASCE7-2005 evaluated base shear and overturning	_
4.4.4.1.C	
4.4.4.1 Comments on results of effect of terrain roughness on P.O.D	156

CHAPTER 5
SUMMARY AND CONCLUSIONS157
5.1 Summary
5.2 Conclusions
5.3 Recommendations for Future Research
REFERENCES161
APPENDIX A
DETAILED RESULTS OF PARAMITRIC STUDY CASES167
LIST OF FIGURES
Figure 1.1 Along and Across Wind Actions
Figure 2.1 Schematic of a typical open-circuit wind tunnel8
Figure 2.2 Simple stick aero elastic model9
Figure 2.3 An aero elastic model with provisions for simulating torsion10
Figure 2.4 Detail view of high-frequency force balance (HFFB) model:
(a,b) Close-up view of instrumentation and (c) model.[11]11
Figure 2.5 Schematic of five-component force balance model
Figure 2.6 Building cross-sections considered in the study [24]
Figure 2.7 Photograph of some of the balsa wood models used in this study [24]14
Figure 2.8 A schematic representation of Daveport's design procedure
Figure 2.9 The over all grid distribution of the study [53]26
Figure 2.10 The computational domains and boundary conditions used in
the study [53]
Figure 3.1 typical plan from ground to elevation 130.2m31
Figure 3.2 plan of outrigger level from elevation 130.2m to elevation 133.8m31
Figure 3.3 typical plan from elevation 137.4m to roof
Figure 3.4 Geometry of the Rolex tower building
Figure 3.5 Isometric of the 3D model of the Rolex tower building
Figure 3.6 The wind tunnel study model of the Rolex tower building36
Figure 3.7 The distribution of the pressure taps and plastic tubes
Figure 3.8 The pressure transducer used in the wind tunnel test

Figure 3.9 Computational domain and boundary conditions
Figure 3.10 Domain and building of case study (in case of wind in X-
direction)45
Figure 3.11 Overall grid distribution (in case of wind in X-direction)
Figure 3.12 Grid generation style (in case of wind in X-direction)
Figure 3.13 Inflow velocity profile of the analytical model
Figure 3.14 Velocity contours in X-direction on X-Z plane passing throw the building (at
y=15.0m)51
Figure 3.15 Velocity contours in X-direction on X-Y plane passing throw the building (at Z=50.0m)
Figure 3.16 Velocity vectors in X-direction on X-Z plane passing throw the building (at y=15.0m)
Figure 3.17 Velocity vectors in X-direction on X-Y plane passing throw the building (at
Z=50.0m)52
Figure 3.18 Time history of total force at base along X-axis (Fx)53
Figure 3.19 Time history of overturning moment at base about Y-axis (My)53
Figure 3.20 Velocity contours in Y-direction on Y-Z plane passing throw the
building (at x=15.0m)55
Figure 3.21 Velocity contours in Y-direction on X-Y plane passing throw the
building (at Z=50.0m)55
Figure 3.22 Velocity vectors in Y-direction on Y-Z plane passing throw the building
(at x=15.0m)56
Figure 3.23 Velocity vectors in Y-direction on X-Y plane passing throw the building
(at Z=50.0m)56
Figure 3.24 Time history of total force at base along Y-axis (Fy)57
Figure 3.25 Time history of overturning moment at base about X-axis(Mx)57
Figure 3.26 Story shear force (Qx) (mean, dynamic and total) in case of wind in X-
direction69
Figure 3.27 Story overturning moment (My) (mean, dynamic and total) obtained by
numerical solution
Figure 3.28 Story shear force (Qx) (mean, dynamic and total) in case of wind in X-
direction

Figure 3.29 Story overturning moment (Mx) (mean, dynamic and total) obtained by
numerical solution81
Figure 3.30 Story shear force (Qx) (experimental, numerical, and analytical) in case
of wind in X-direction
Figure 3.31 Story overturning moment (My) (experimental, numerical, and
analytical) in case of wind in X-direction
Figure 3.32 Story shear force (Qy) (experimental, numerical, and analytical) in case
of wind in Y-direction
Figure 3.33 Story overturning moment (Mx) (experimental, numerical, and
analytical) in case of wind in Y-direction
Figure 4.1 Summary of variables considered in the parametric study125
Figure 4.2 Case No. A $_1_1_50_T1$ (shear force and overturning moment)127
Figure 4.3 Case No. A $_1_1_50_T2$ (shear force and overturning moment)127
Figure 4.4 Case No. A $_11_100_T1$ (shear force and overturning moment)128
Figure 4.5 Case No. A_1_1_100_T2 (shear force and overturning moment)128
Figure 4.6 Case No. A_1_1_150_T1 (shear force and overturning moment)129
Figure 4.7 Case No. A $_11_150_T2$ (shear force and overturning moment)129
Figure 4.8 Case No. A $_1_1_200_T1$ (shear force and overturning moment)130
Figure 4.9 Case No. A_1_1_200_T2 (shear force and overturning moment)130 $$
Figure 4.10 percent of difference (P.O.D.) for plan aspect ratio 1:1 for terrain
roughness A
Figure 4.11 percent of difference (P.O.D.) for plan aspect ratio 1:1 for terrain
roughness B
Figure 4.12 percent of difference (P.O.D.) for plan aspect ratio 1:1.5 for terrain
roughness A
Figure 4.13 percent of difference (P.O.D.) for plan aspect ratio 1:1.5 for terrain
roughness B
Figure 4.14 percent of difference (P.O.D.) for plan aspect ratio 1:2 for terrain
roughness A
Figure 4.15 percent of difference (P.O.D.) for plan aspect ratio 1:2 for terrain
roughness B
Figure 4.16 percent of difference (P.O.D.) for plan aspect ratio 1:2.5 for terrain
roughness A

Figure 4.17 percent of difference (P.O.D.) for plan aspect ratio 1:2.5 for terrain
roughness B
Figure 4.18 percent of difference (P.O.D.) for plan aspect ratio 1.5:1 for terrain
roughness A
Figure 4.19 percent of difference (P.O.D.) for plan aspect ratio 1.5:1 for terrain
roughness B
Figure 4.20 percent of difference (P.O.D.) for plan aspect ratio 2:1 for terrain
roughness A
Figure 4.21 percent of difference (P.O.D.) for plan aspect ratio 2:1 for terrain
roughness B
Figure 4.22 percent of difference (P.O.D.) for plan aspect ratio 2.5:1 for terrain
roughness A
Figure 4.23 percent of difference (P.O.D.) for plan aspect ratio 2.5:1 for terrain
roughness B
Figure 4.24 percent of difference (P.O.D.) of base shear for fundamental period (T1)
and terrain roughness A
Figure 4.25 percent of difference (P.O.D.) of overturning moment for fundamental
period (T1) and terrain roughness A
Figure 4.26 percent of difference (P.O.D.) of base shear for fundamental period $(T1)$
and terrain roughness B
Figure 4.27 percent of difference (P.O.D.) of overturning moment for fundamental
period (T1) and terrain roughness B
Figure 4.28 percent of difference (P.O.D.) of base shear for fundamental period (T2) $$
and terrain roughness A
Figure 4.29 percent of difference (P.O.D.) of overturning moment for fundamental
period (T2) and terrain roughness A
Figure 4.30 percent of difference (P.O.D.) of base shear for fundamental period (T2) $$
and terrain roughness B
Figure 4.31 percent of difference (P.O.D.) of overturning moment for fundamental
period (T2) and terrain roughness B
Figure 4.32 percent of difference (P.O.D.) of base shear for fundamental period $(T1)$
and terrain roughness A
Figure 4.33 percent of difference (P.O.D.) of overturning moment for fundamental
period (T1) and terrain roughness A144

Figure 4.34 percent of difference (P.O.D.) of base shear for fundamental period (T1)
and terrain roughness B
Figure 4.35 percent of difference (P.O.D.) of overturning moment for fundamental
period (T1) and terrain roughness B
Figure 4.36 percent of difference (P.O.D.) of base shear for fundamental period (T2)
and terrain roughness A
Figure 4.37 percent of difference (P.O.D.) of overturning moment for fundamental
period (T2) and terrain roughness A
Figure 4.38 percent of difference (P.O.D.) of base shear for fundamental period (T2)
and terrain roughness B
Figure 4.39 percent of difference (P.O.D.) of overturning moment for fundamental
period (T2) and terrain roughness B
Figure 4.40 percent of difference (P.O.D.) for plan aspect ratio 1:1 and time period
(T1)149
Figure 4.41 percent of difference (P.O.D.) for plan aspect ratio 1:1 and time period
(T2)149
Figure 4.42 percent of difference (P.O.D.) for plan aspect ratio 1:1.5 and time period
(T1)
Figure 4.43 percent of difference (P.O.D.) for plan aspect ratio 1:1.5 and time period
(T2)
Figure 4.44 percent of difference (P.O.D.) for plan aspect ratio 1:2 and time period
(T1)
Figure 4.45 percent of difference (P.O.D.) for plan aspect ratio 1:2 and time period
(T2)
Figure 4.46 percent of difference (P.O.D.) for plan aspect ratio 1:2.5 and time period
(T1)
Figure 4.47 percent of difference (P.O.D.) for plan aspect ratio 1:2.5 and time period
(T2)
Figure 4.48 percent of difference (P.O.D.) for plan aspect ratio 1.5:1 and time period
(T1)
Figure 4.49 percent of difference (P.O.D.) for plan aspect ratio 1.5:1 and time period
(T2)
Figure 4.50 percent of difference (P.O.D.) for plan aspect ratio 2:1 and time period
(T1)

Figure 4.51 percent of difference (P.O.D.) for plan aspect ratio 2:1 and time period
(T2)
Figure 4.52 percent of difference (P.O.D.) for plan aspect ratio 2.5:1 and time period
(T1)155
Figure 4.53 percent of difference (P.O.D.) for plan aspect ratio 2.5:1 and time period
(T2)
LIST OF TABLES
Table 3.1 External forces for wind in X and Y directions at each story
Table 3.2 Shear forces and overturning moments in X and Y directions
Table 3.3 The inflow velocity profile of the analytical model
Table 3.4 The summary of post-test analysis forces of wind in X-direction66
Table 3.5 Wind forces at each story (Fx,Qx) in case of wind in X-direction67
Table 3.6 Wind overturning moments (My) in case of wind in X-direction70
Table 3.7 The summary of post-test analysis forces of wind in Y-direction75
Table 3.8 Wind forces at each story (Fy,Qy) in case of wind in Y-direction76
Table 3.9 Wind overturning moments (Mx) in case of wind in Y-direction79
Table 3.10 Walls Cp defined in ASCE7-2005 for case study building84
Table 3.11 External forces for wind in X and Y directions at each story89
Table 3.12 Shear forces and overturning moments in X and Y directions91
Table 3.13 External forces for wind in X directions at each story
Table 3.14 Shear forces and overturning moments in X and Y directions99
Table 3.15 External forces for wind in X and Y directions at each story
Table 3.16 Shear forces and overturning moments in X and Y directions107
Table 3.17 External forces for wind in X and Y directions at each story
Table 3.18 Shear forces and overturning moments in X and Y directions
Table 3.10 Percentage of difference between numerical model and other models 122