Keratitis Group

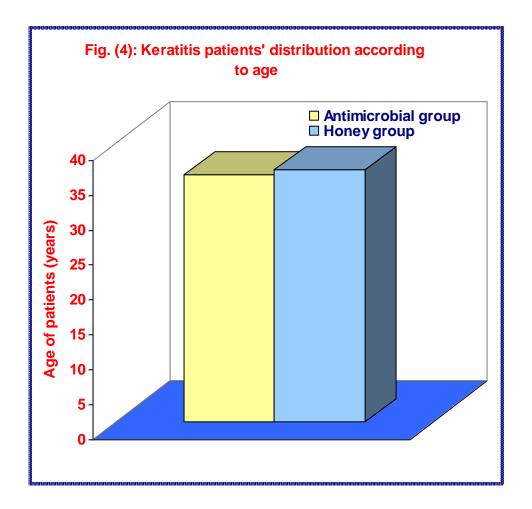
Patients' characteristics

Age and Sex distribution

Keratitis group comprised 200 patients; 130 males and 70 females with a male:female ratio= 13:7. Mean age of male patients was 36.3±11.3; range 15-54 years, whereas that of female patients was 34.9±11.1; range, 15-53 years, with a non-significant difference (P>0.05) between both sexes as regards age distribution, (Table 9).

Table (9): Keratitis patients' distribution according to gender and age

	Males	Females
Number (%)	130 (65%)	70 (35%)
Age (years)	36.3±11.3 (15-54)	34.9±11.1 (15-53)


Data are presented as number & mean±SD, percentages & ranges are in parenthesis

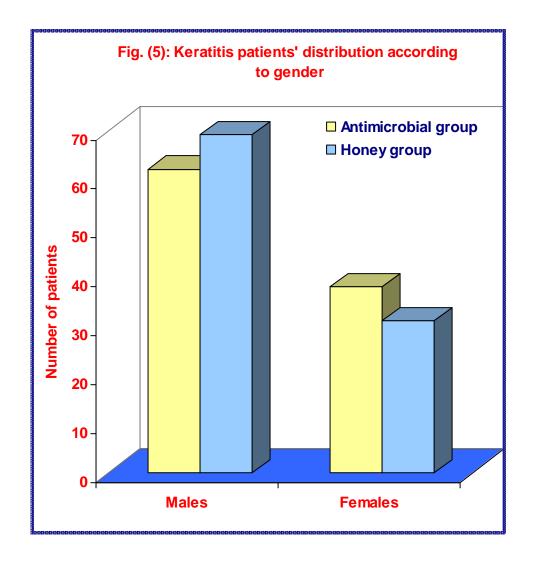
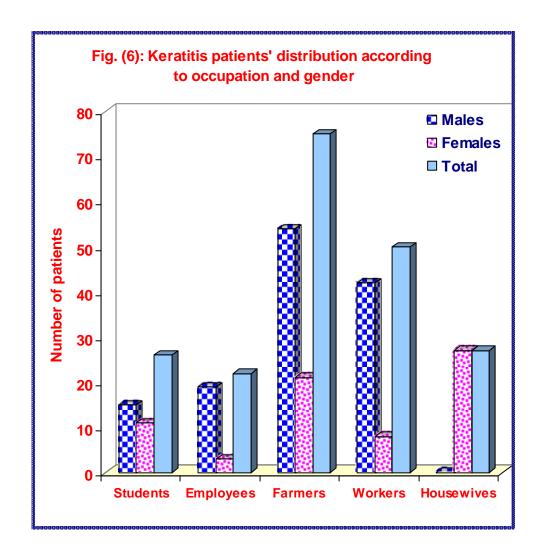

The mean age of patients included in antimicrobial group was 35.4 ± 11 ; range, 15-54 years, while in honey group was 36.1 ± 11.5 ; range, 19-51 years, with a non-significant difference (P>0.05) between both groups as regards age, (Fig. 4). Male: female ratio was 62:38 and 69:31 in both groups respectively, with a non-significant difference ($X^2=0.65$, P>0.05) between both groups, (Table 10, Fig. 5).

Table (10): Keratitis patients' distribution according to gender and age among both groups

	Antimicrobial group (n=100)	Honey group (n=100)
M:F	62:38	69:31
Age (years)	35.4±11 (15-54)	36.1±11.5 (19-51)

Data are presented as ratios & mean±SD, ranges are in parenthesis

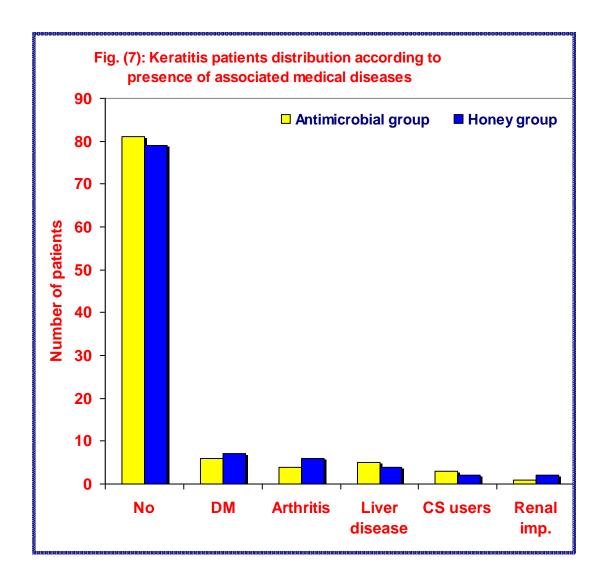


Occupation

The majority of patients were farmers; 75 patients (37.5%) with male to female ratio of 2.6:1, 50 patients were manual workers (25%) with male to female ratio of 5.3:1, 26 patients (13%) were students with male to female ratio of 1.4:1 and 22 patients were employees with male to female ratio of 6.3:1. There were 27 female patients (13.5%) were housewives, (Table 11, Fig. 6).

Table (11): Keratitis patients' distribution according to their occupation

Sex	Males	Females	Total
Occupation			
Students	15 (6.2%)	11 (4%)	26 (13%)
Employees	19 (14%)	3 (6%)	22 (11%)
Farmer	54 (16%)	21 (4%)	75 (37.5%)
Workers	42 (24%)	8 (8%)	50 (25%)
Housewives	0	27 (18%)	27 (13.5%)
Total	130 (65%)	70 (35%)	200 (100%)

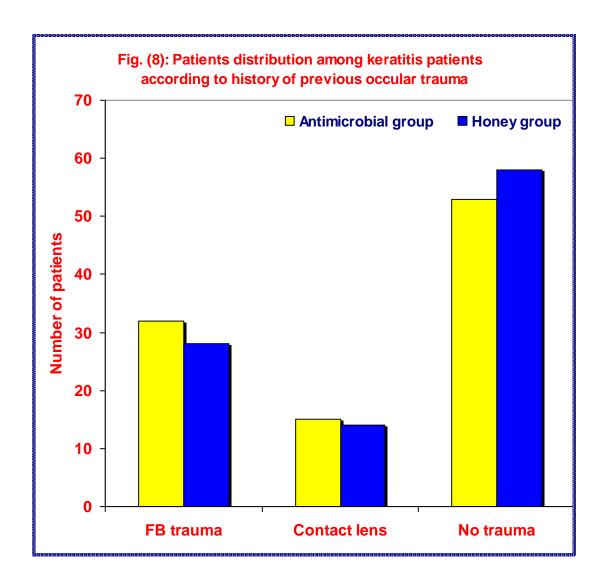


General Diseases

There were 160 patients (80%) free of systemic diseases; while the other 40 patients had variant systemic diseases. Thirteen patients (6.5%) were diabetics, 10 patients (5%) had arthritis, 9 patients (4.5%) had liver disease, 5 patients (2.5%) were corticosteroid users for dermatological disease and 3 patients had renal impairment , (Table 12, Fig. 7). There was a non-significant difference between patients included in antimicrobial and honey groups as regards the frequency of systemic diseases, ($X^2=0.36$, P>0.05).

Table (12): Keratitis patients' distribution according to the presence of systemic diseases

	Group	Antimicrobial	Honey	Total
No system	nic diseases (n=160)	81	79	160 (80%)
Systemic	Diabetes mellitus	6	7	13 (6.5%)
diseases (n=40)	Arthritis	4	6	10 (5%)
	Liver diseases	5	4	9 (4.5%)
	Corticosteroid user	3	2	5 (2.5%)
	Renal impairment	1	2	3 (1.5%)
Total		100	100	200 (100%)



Local trauma

Sixty patients (30%) had foreign body trauma and 29 patients (14.5%) were contact lens wearers. The other 111 patients (55.5%) had no history of previous ocular surgery or trauma, (Table 13, Fig. 8).

Table (13): Keratitis patients' distribution according to the presence of past history of trauma

	Antimicrobial group Honey group		Total
Foreign body trauma	32	28	60 (30%)
Contact lens wearers	15	14	29 (14.5%)
No history of trauma	53	58	111 (55.5%)
Total	100	100	200 (100%)

Ophthalmic Examination

Corneal Opacification

Thirty patients (15%) had past history of previous corneal ulceration that healed but resulted in corneal opacity. There were 17 patients in antimicrobial group and 13 patients in honey group with a non-significant difference between both groups, ($X^2=0.234$, P>0.05), (Table 14, Fig. 9).

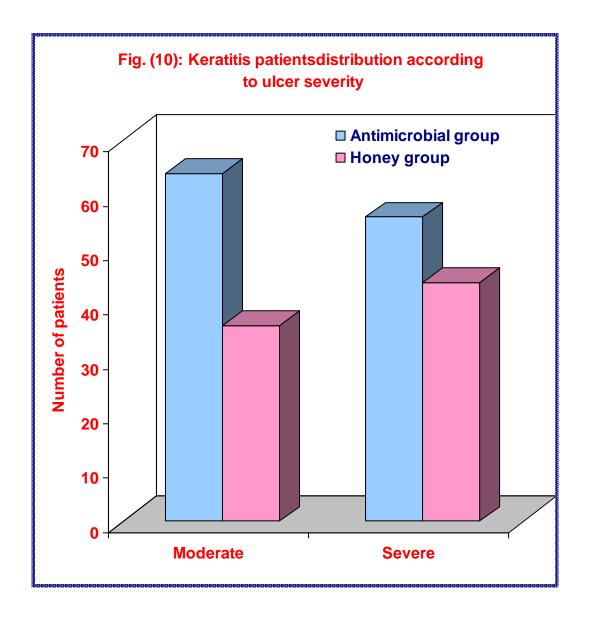
Ten were diabetics, 12 were manual workers exposed to foreign body trauma frequently, 5 patients had hepatic disease and the other 3 patients were maintained on systemic corticosteroid therapy, (Table 15).

Table (14): Keratitis patients' distribution according to the presence of corneal opacity

	Antimicrobial group	Honey group	Total
No corneal opacity	83	87	170 (85%)
Corneal opacity	17	13	30 (15%)
Total	100	100	200 (100%)

Table (15): Distribution of patients with corneal opacity according to the causative factor

	Antimicrobial group	Honey group	Total	
Diabetics	6	4	10 (5%)	
Foreign body trauma	6	6	12 (6%)	
Hepatic disease	3	2	5 (2.5%)	
Systemic steroid therapy	2	1	3 (1.5%)	
Total	17	13	30 (15%)	

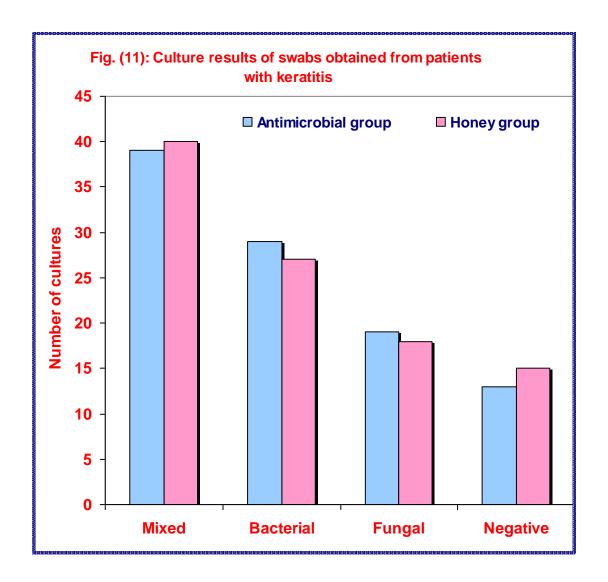


Ulcer severity

There were 120 eyes (60%) with moderate ulcer; 64 in antimicrobial group and 56 in honey group and 80 eyes had severe ulcer; 36 in antimicrobial group and 44 in honey group, (Table 16, Fig. 10). There was a non-significant difference between both groups as regards the frequency of ulcers of the two types, ($X^2=0.42$, P>0.05).

Table (16): Ulcers' distribution according to ulcer severity

	Antimicrobial group	Total	
Moderate Ulcer	64	56	120 (60%)
Severe Ulcer	36	44	80 (40%)
Total	100	100	200 (100%)


Results of Laboratory Studies

A) Culture results

- ❖ No growth either on bacterial or fungal culture media was reported in 28 specimens (14%). The patients gave these specimen were examined clinically and stained for viral infection and all proved to viral ulcers.
- Seventy-nine specimens gave growth on both bacterial and fungal culture media (Mixed infection).
- ❖ Fifty-sex specimens gave growth on bacterial culture media only (Pure bacterial infection).
- ❖ Thirty-seven specimens gave growth only on fungal culture media (Pure fungal infection), (Table 17, Fig. 11).
- ❖ There was a non-significant difference between antimicrobial and honey groups as regards the frequency of result of culture examination, ($X^2=0.9$, p>0.05).

Table (17): Culture results of specimens obtained from keratitis patients

	Antimicrobial group	Honey group	Total
Mixed (bacterial &	39	40	79
fungal)			(39.5%)
Bacteria	29	27	56 (28%)
Fungi	19	18	37 (18.5%)
Negative	13	15	28 (14%)
Total	100	100	200 (100%)

B) Identification of Infecting Pathogens

- ❖ Identification of infecting organisms defined variant types of bacteria in 135 specimens; 56 pure and 79 mixed, (Table 18).
 - *Staph. aureus,* (Fig. 12 a&b) was defined in 34 specimen; 13 pure and 31 mixed bacterial infections
 - Staph. epidermosa was defined in 32 specimens; 12 pure and 20 mixed bacterial infections
 - *Ps. Aeruginosa* (Fig. 13 a-d) was defined in 27 specimens; 10 pure and 17 mixed bacterial infections.
 - Esch. Coli (Fig. 14 a-c) was defined in 9 specimens; 5 pure and 4 mixed bacterial infections
 - *Proteus* (Fig. 15 a&b) was defined in 3 specimens; 2 pure and one mixed bacterial infections.
 - *Streptococci* (Fig 16) was defined in 7 specimens; 4 pure and 3 mixed bacterial infections.
 - *Micrococcus luteus* was defined in 13 specimens; 6 pure and 7 mixed bacterial infections
 - Bacillus cerus was defined in 10 specimens; 4 pure and 6 mixed bacterial infections.
- ❖ Identification of infecting organisms defined variant types of fungi in 116 specimens; 37 pure and 79 mixed, (Table 18).
 - Fungal infection was caused by *Candida albicans* (Fig. 17 a&b) in 14 pure fungal infections and 32 mixed infection
 - *Aspergillus fumigatus* (Fig. 18 a&b) was defined in 9 pure fungal infections and 18 mixed infection,
 - Fusarium solani (Fig. 19 a&b) was defined in 6 pure fungal infections and 13 mixed infection and
 - Aspergillus niger (Fig. 20 a&b) was defined in 5 pure fungal infections and 9 mixed infection and
 - *Pencillium species* in 3 pure fungal infections and 7 mixed infection.

Table (18): Infective pathogens detected in the corneal smears

	Pure infection	Mixed infection	Total
Staph. Aureus	13	21	34
Pseudomonas aeruginosa	10	17	27
Staph. Epidermosa	12	20	32
Esch. coli	5	4	9
Proteus	2	1	3
Streptococci	4	3	7
Micrococcus luteus	6	7	13
Bacillus cerus	4	6	10
C. albicans	14	32	46
Aspergillus fumigatus	9	18	27
Fusarium solani	6	13	19
Aspergillus niger	5	9	14
Penicillium species	3	7	10

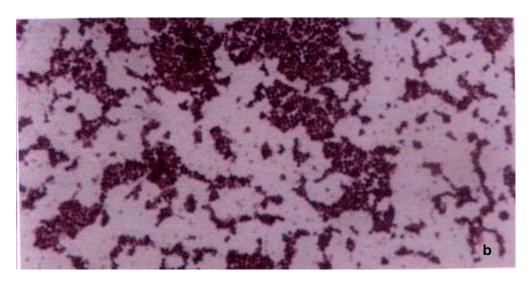


Fig. (12): shows complete hemolysis on blood agar plate (a) and Gram staining of inoculums showed Gram positive cocci (b) both diagnose *staph. aureus* infection

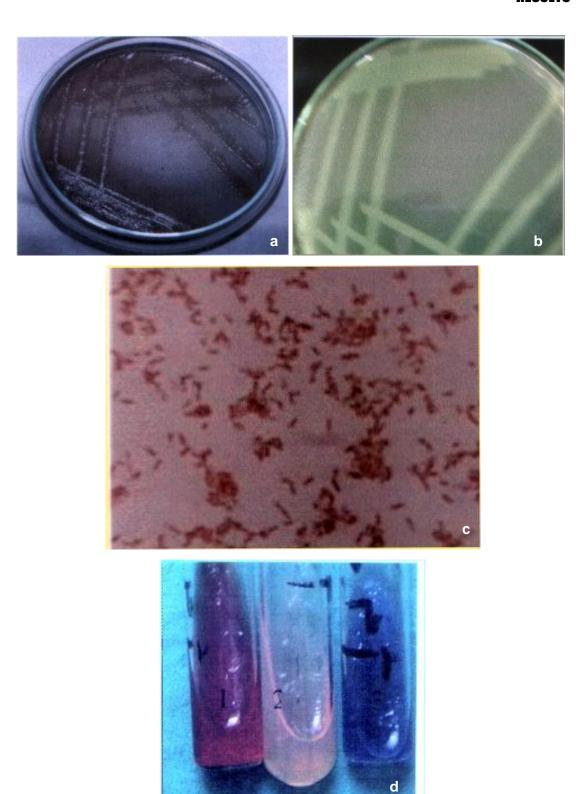
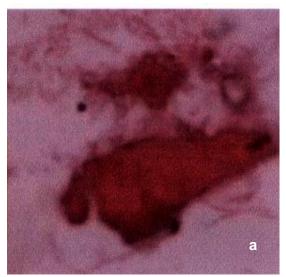
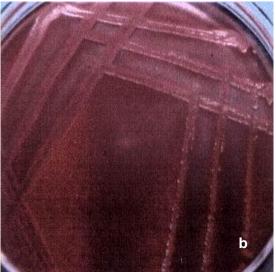




Fig. (13): shows bacteriological diagnostic tests for Ps. Aeruginosa infection

- a. Lactose non-fermenter
- b. Green exo-pigments on nutrient agar.
- c. Gram negative bacilli on microscopic examination
- d. Biochemical tests: triple sugar non-fermenter (tube 1), urease test negative (tube 2) & citrate test positive (tube 3).

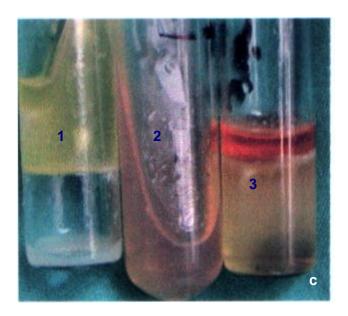


Fig. (14): shows bacteriological diagnostic tests for mixed *E. coli and Candida* infection

- a. Direct Gram smear shows Gram negative bacilli and stained mucosa
- b. Lactose fermenter on Mac Conkey
- c. Biochemical tests:
 - Tube (1): triple sugar test showing yellow slant, yellow butt & gas at bottom.
 - Tube (2): urease test negative
 - Tube (3): SIM test showing positive indole test (red ring), motile organism (turbid media)
 - & no sulphid production

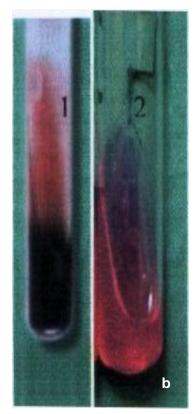


Fig. (15): shows bacteriological diagnostic tests for *Proteus* infection

- a. Swarming colony of proteus on nutrient agar
- b. Biochemical tests:

Tube (1): triple sugar test showing alkaline red slant & black butt (H₂S producer)

Tube (2): urease test positive

Fig. (16): shows Gram positive cocci; Streptococci

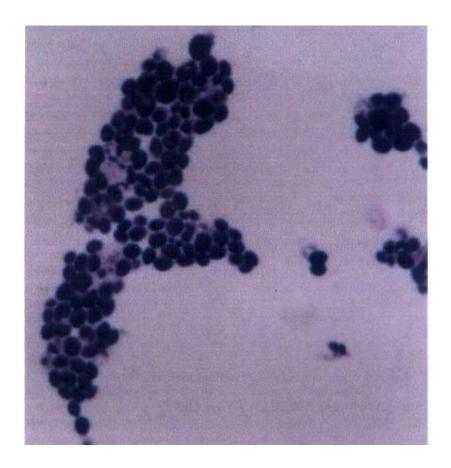


Fig. (17): shows diagnostic tests for Candida infection

- a. Growth of Candida on Sabouraud's agar
- b. Microscopic appearance of Gram stained Candida (x1000).

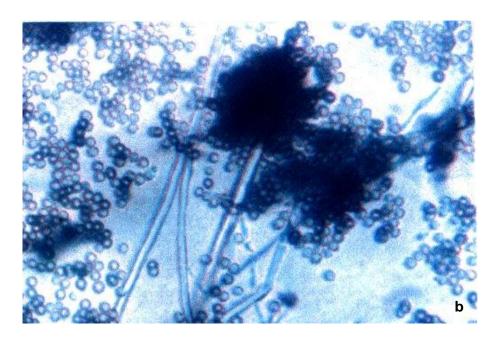


Fig. (18): shows diagnostic tests for Aspergillus fumigatous infection

- c. Growth of Asp. fumigatous on Sabouraud's agar
- d. Microscopic appearance of *Asp fumigatous* using a drop of distilled water (x400) showing characteristic numerous and smooth spores

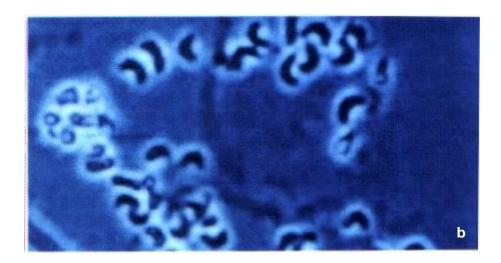


Fig. (19): shows diagnostic tests for Fusarium solani infection

- a. Growth of F. solani on Sabouraud's agar
- b. Microscopic appearance of Asp fumigatous using a drop of methylene blue 10% (x400).

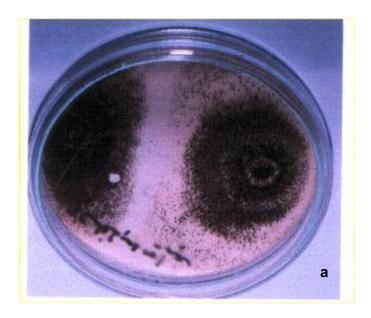


Fig. (20): shows diagnostic tests for Aspergillus niger infection

- a. Growth of Aspergillus niger on Sabouraud's agar
- b. Microscopic appearance of Asp. niger using a drop of distilled water (x400).

C) Sensitivity Tests

- Honey gave rapid antimicrobial activity evaluated by growth inhibition zones that non-significantly different from that achieved with ciprofloxacin.
 - <u>High activity</u> with inhibition zone more than 20 mm was reported against growth *Staph. Epidermosa*, (Fig. 21), *Micrococcus luteus*, (Fig. 22), and *Ps. Aeruginosa*, (Fig. 23).
 - <u>Moderate activity</u> with inhibition zone of 10-20 mm was reported against growth of *Bacillus cerus*, (Fig. 24) and *Staph. Aureus*, (Fig. 25).
 - The percentages of inhibition of yeast and Asp fumigatus growth were 66.6% and 75%, respectively in comparison to clotrimazole 1% that showed percentage of inhibition of 86% and 95% on fungal growth, (Table 19).

Table (19): Results of in-vitro antimicrobial effect of honey in comparison to appropriate antimicrobial drug

	Honey	Control	
		Ciprofloxacin	Clotrimazole 1%
Staph. Epidermosa	+++	+++	
Staph. Aureus	++	++	
Pseudomonas aeruginosa	+++	+	
Micrococcus luteus	+++	+++	
Bacillus cerus	++	++	
Yeast	66.6%		86%
Aspergillus fumigatus	75%		95%

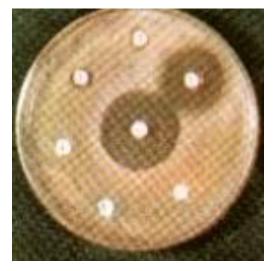


Fig. (21): Staph. Epidermosa

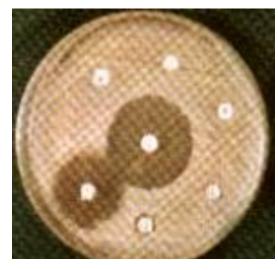


Fig. (22): Micrococcus luteus

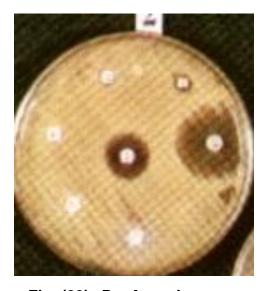


Fig. (23): Ps. Aeruginosa

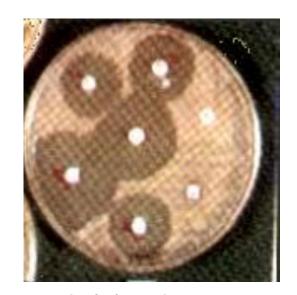
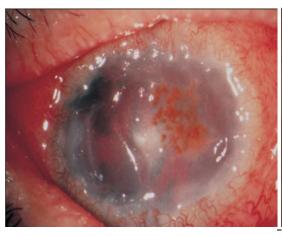


Fig. (24): Bacillus cerus

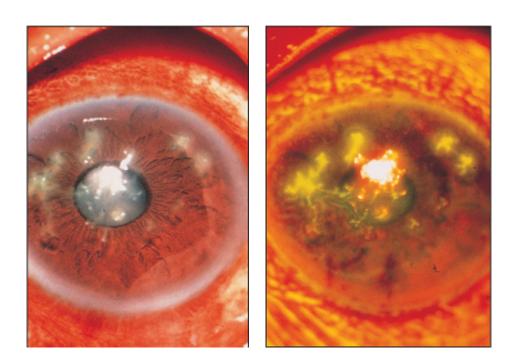
Fig. (25): Staph. Aureus

Ophthalmic Diagnosis (Case Presentation)

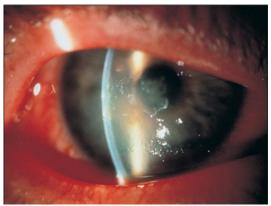

- Typical microbial keratitis: There was accumulation of inflammatory cells at the dependent part of the anterior chamber of the eye (hypopyon) and mid-corneal defect, (Fig. 26).
- Hypopyon: There are layered inflammatory cells in the anterior chamber of the eye, (Fig. 27).
- Streptococcal bacterial keratitis with infiltration of the central cornea, (Fig. 28).
- Infectious crystalline keratopathy caused by Streptococcus viridans, (Fig. 29).
- Pseudomonas infection of the cornea, with liquefying necrosis, advanced central thinning, and hypopyon formation, (Fig. 30).
- Viral infection:
 - a. Vesicles of the eyelid caused by herpes simplex virus primary infection, (Fig. 31).
 - b. Dendritic lesions of recurrent herpes simplex epithelial disease (Fig. 32).
 - c. Slit-lamp appearance of:
 - Active necrotizing stromal disease of recurrent herpes simplex infection with central corneal infiltration and thining, inflammation and hypopyon formation, (Fig. 33a).
 - Significant central corneal scarring following necrotizing stromal disease caused by recurrent herpes simplex virus infection, (Fig. 33b).

- Fungal infection:

- a. Fungal keratitis: The corneal surface looks rough with several satellite lesions seen at the periphery on the left side of the cornea, (Fig. 34).
- b. Slit-lamp appearance of feathery stromal infiltrates typical of fungal keratitis, (Fig. 35).
- Contact lens keratopathy:
 - a. Contact lens acute red eye, (Fig. 36).
 - b. Intraepithelial infiltration of the cornea by Pseudomonas organisms in a hydrophilic contact lens wearer, (Fig. 37).



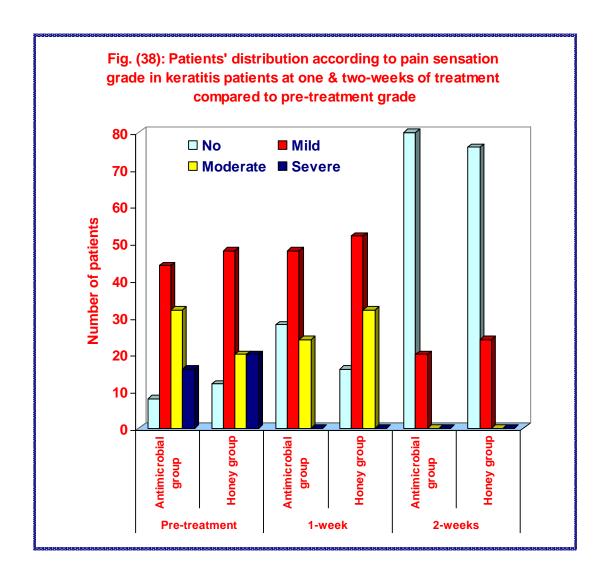




Clinical Outcome

A) <u>Pain</u>

❖ Both lines of treatment could achieve dramatic pain relief with a significant increase in number of patients with less pain-grade at 1-week and 2-weeks in comparison to pretreatment pain grade and a significant increase in number of patients at 2-weeks in comparison to those reported at 1-week, but with non-significant difference between frequency of patients according to pain grade between both groups (Table 20, Fig. 38).


Table (20): Pain grade determined at 1-week and 2-weeks in comparison to pretreatment pain grade in both groups

Time	Pre-treat		1-w		2-w	
Pain	Antimicrobial	Honey	Antimicrobial	Honey	Antimicrobial	Honey
grade	group	group	group	group	group	group
No	8	12	28	16	80	76
Mild	44	48	48	52	20	24
Moderate	32	20	24	32	0	0
Severe	16	20	0	0	0	0
P ₁			<0.01	<0.01	<0.001	<0.001
P ₂					<0.001	<0.001
P ₃	>0.05		>0.05		>0.05	

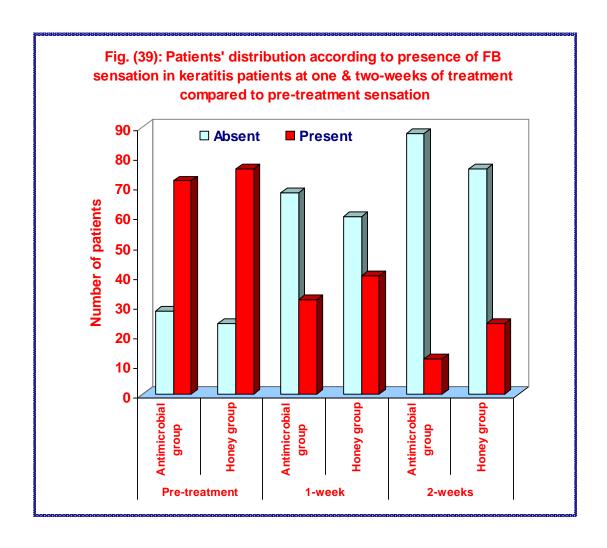
 P_1 : significant versus pre-treatment

 P_2 : significant versus 1-week

 P_3 : significant versus Honey group

B) Foreign body sensation

❖ Topical treatment reduced foreign body sensation significantly in comparison to pre-treatment both at one and two weeks of treatment, with a significant difference in favor of results obtained at 2 weeks, but with a non-significant difference between frequency of patients according to foreign body sensation between both groups, (Table 21, Fig. 39).

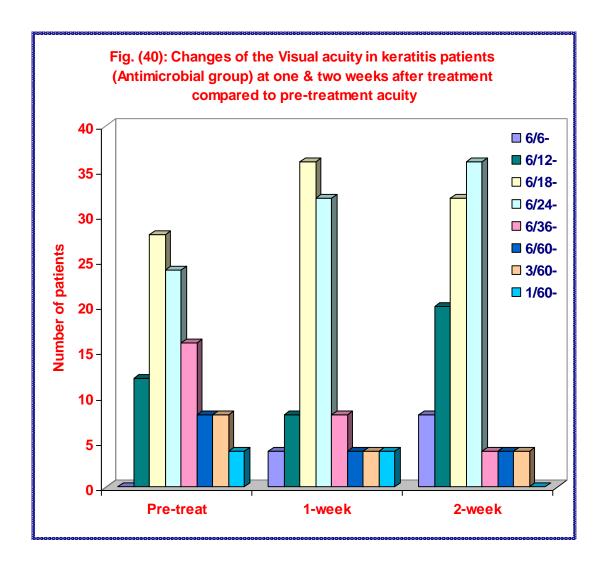

Table (21): Patients' distribution according to frequency of foreign body sensation at 1-week and 2-weeks in comparison to pre-treatment pain grade in both groups

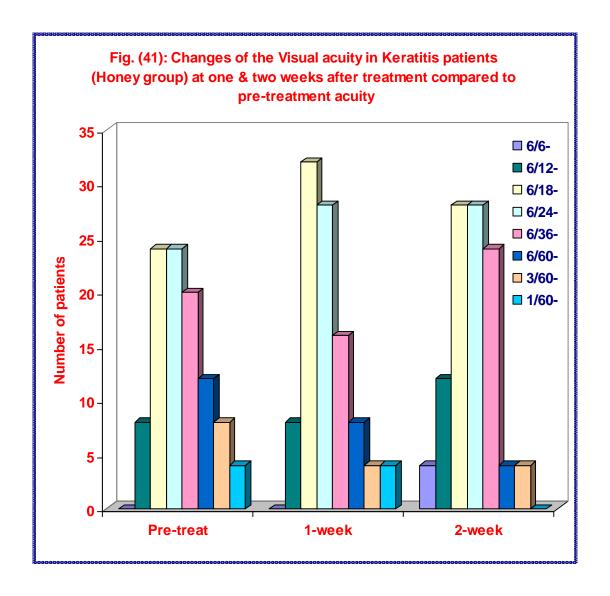
Time	Pre-treat		1-w		2-w	
FB	Antimicrobial	Honey	Antimicrobial	Honey	Antimicrobial	Honey
sensation	group	group	group	group	group	group
Absent	28	24	68	60	88	76
Present	72	76	32	40	12	24
P ₁			<0.01	<0.01	<0.001	<0.001
P ₂					<0.001	<0.001
P ₃	>0.05		>0.05		>0.05	

 P_1 : significant versus pre-treatment

P₂: significant versus 1-week

P₃: significant versus Honey group




C) Visual Acuity

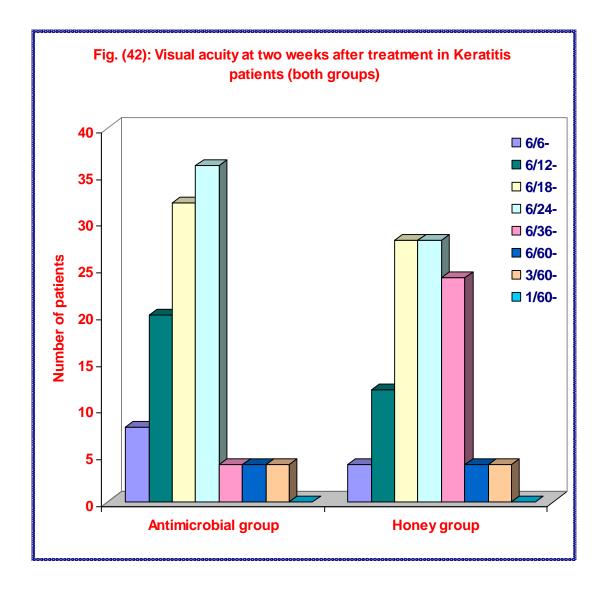

❖ Both lines of treatment could achieve improvement of visual acuity with a significant increase of number of patients with improved visual acuity at 2-weeks in comparison to pretreatment acuity, but with non-significant difference between frequency of patients' visual acuity between both groups (Table 22, Fig. 40-42).

Table (22): Visual acuity achieved at 1-week and 2-weeks in comparison to pretreatment acuity in both groups

Time	Pre-treat		1-week		2-week	
Visual	Antimicrobial	Honey	Antimicrobial	Honey	Antimicrobial	Honey
Acuity	group	group	group	group	group	group
6/6	0	0	4	0	8	4
6/12	12	8	8	8	20	12
6/18	28	24	36	32	32	28
6/24	24	24	32	28	36	28
6/36	16	20	8	16	4	24
6/60	8	12	4	8	4	4
3/60	8	8	4	4	4	4
1/60	4	4	4	4	0	0

D) Corneal haziness

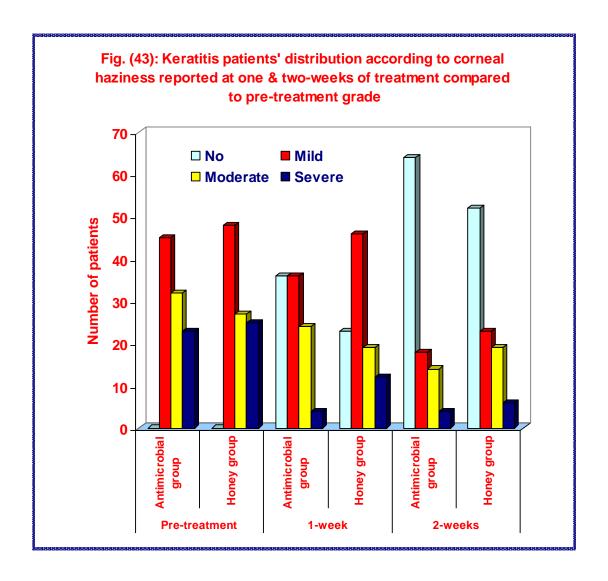
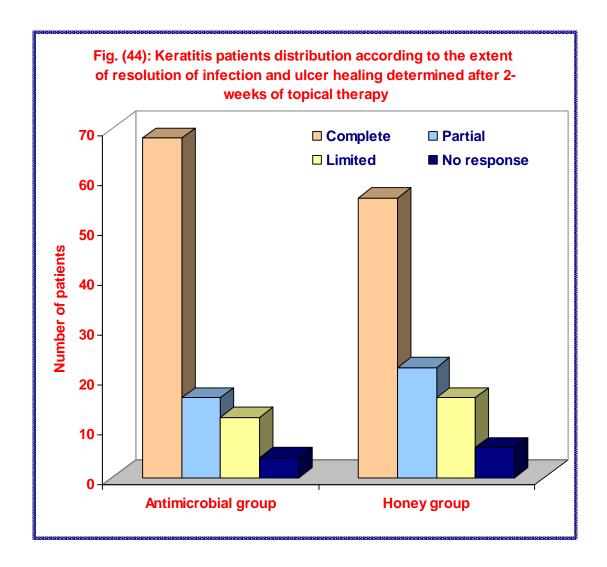

- ❖ Topical therapy used in keratitis patients (both groups) significantly reduced the frequency of corneal haziness both at 1 and 2-weeks in comparison to pre-treatment and 1-week frequency.
- ❖ Topical honey significantly reduced corneal haziness at end of the first week of therapy compared to antimicrobial topical therapy, but the difference became non-significant at the end of the second week despite being in favor of topical honey, (Table 23, Fig. 43).

Table (23): Patients' distribution according to degree of corneal haziness determined at 1-week and 2-weeks in comparison to pre-treatment degree of haziness

Time	Pre-treat		1-w		2-w	
Corneal	Antimicrobial	Honey	Antimicrobial	Honey	Antimicrobial	Honey
haziness	group	group	group	group	group	group
No	0	0	36	23	64	52
Mild	45	48	36	46	18	23
Moderate	32	27	24	19	14	19
Severe	23	25	4	12	4	6
P ₁			<0.001	<0.01	<0.001	<0.001
P ₂					<0.01	<0.001
P ₃			<0.05		>0.05	

P₁: significant versus pre-treatment

P₂: significant versus 1-week



E) Ulcer Healing

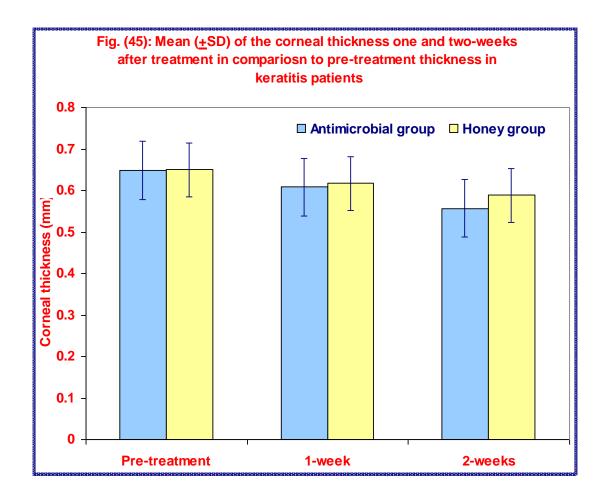
- ❖ Complete resolution of infection and ulcer healing was reported in 124 eyes (62%); 68 with topical honey and 56 with topical antimicrobials.
- ❖ Partial resolution of infection and ulcer healing was reported in 38 eyes (19%); 16 with topical honey and 22 with topical antimicrobials.
- ❖ Limited effect was reported in 28 eyes (14%); 12 with topical honey and 16 with topical antimicrobials.
- No response throughout the treatment period was reported in only 10 eyes (5%); 4 with topical honey and 6 with topical antimicrobials.
- ❖ There was a non-significant difference in the clinical outcome as regards resolution of infection and healing of the ulcer between both modalities of topical therapy, (X²=0.082, p>0.05), (Table 24, Fig. 44).

Table (24): Patients' distribution according to extent of resolution of infection and ulcer healing determined after 2-weeks of topical therapy

	Antimicrobial group	Honey group	Total
Complete	68	56	124
Partial	16	22	38
Limited	12	16	28
No response	4	6	10

F) Corneal Thickness

- ❖ Both lines of treatment could achieve a reduction of the corneal thickness that progressed from the first week to the second week of treatment in comparison to pretreatment corneal thickness.
- ❖ The mean pretreatment corneal thickness was 0.649±0.09 in antimicrobial group and 0.65±0.087 in honey group, while was 0.608±0.088 in antimicrobial group and 0.617±0.08 in honey group at 1-week, and 0.557±0.058 in antimicrobial group and 0.613±0.086 in honey group at 2-weeks.
- ❖ In patients with keratitis (both antimicrobial and honey groups), there was a non-significant (P>0.05) decrease at 1-week that became significant (P<0.05) at 2-week visit with a significant (P<0.05) decrease compared to thickness measured at 1-week.
- ❖ In antimicrobial group, there was a non-significant (P>0.05) decrease at 1-week that became significant (P<0.05) at 2-week visit with a significant (P<0.05) decrease compared to thickness measured in honey group, (Table 25, Fig. 45).


Table (25): Corneal thickness changes at 1-week and 2-weeks in comparison to pre-treatment thickness in both groups

Time	Group	Mean±SD	Significance
Pre-treatment	Antimicrobial	0.649±0.09	
	Honey	0.65±0.087	
1-Week	Antimicrobial	0.608±0.088	P ₁ >0.05
			P ₃ >0.05
	Honey	0.617±0.08	P ₁ >0.05
2-Week	Antimicrobial	0.557±0.058	P ₁ <0.05
			P ₂ <0.05
			P ₃ <0.05
		0.588±0.086	P ₁ <0.05
	Honey		P ₂ <0.05

P₁: significant versus pre-treatment

P₃: significant versus honey group

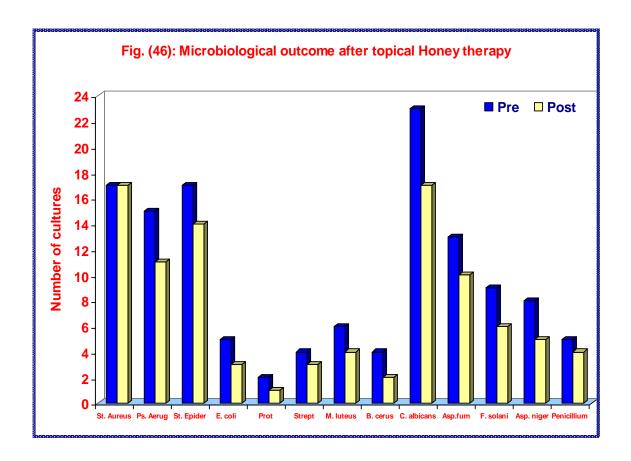
P₂: significant versus 1-week

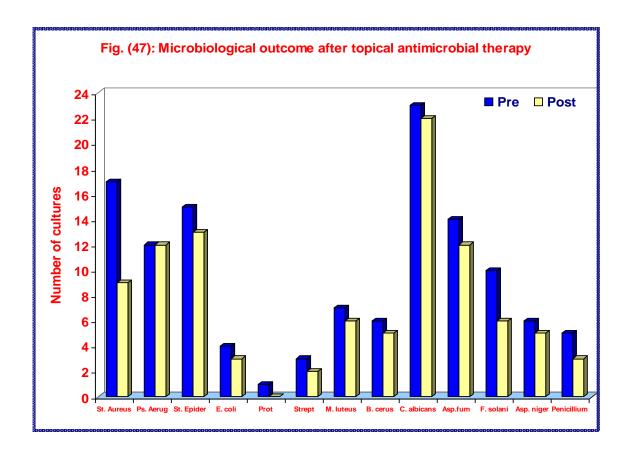
Bacteriological Outcome

- ❖ Topical treatment could achieve a microbial eradication 195 of 258 specimens (77.7%) irrespective of the infecting organism, pure or mixed infection or the modality of topical treatment, (Table 26).
- ❖ Topical therapy resulted in bacterial eradication in 106 of 135 specimens (78.5%) and in fungal eradication in 89 of 116 specimens (76.7%) with a non-significant difference between the effects of infecting pathogen on the outcome of topical therapy.
- ❖ There was a non-significant difference between the effects of topical therapy on pure and mixed infections whether bacterial of fungal, (Table 27).
- ❖ Moreover, there was a non-significant difference between the effects of topical honey (Fig. 52) or antimicrobial drugs (Fig. 53) on the microbiological cure rate, (Table 28).

Table (26): Frequency of cure according to the infective pathogens

	Diseased	Cured
Staph. Aureus	34	26 (76.5%)
Pseudomonas aeruginosa	27	23 (85.2%)
Staph. Epidermosa	32	28 (87.5%)
Esch. coli	9	6 (66.7%)
Proteus	3	1 (33.3%)
Streptococci	7	5 (71.4%)
Micrococcus luteus	13	10 (76.9%)
Bacillus cerus	10	7 (70%)
C. albicans	46	39 (84.8%)
Aspergillus fumigatus	27	22 (81.5%)
Fusarium solani	19	12 (63.2%)
Aspergillus niger	14	10 (71.4%)
Penicillium species	10	6 (60%)
	251	195 (77.7%)


Table (27): Effect of topical therapy on growth of infective pathogens detected in the corneal smears categorized as pure or mixed infections


	Pure infection		Mixed ii	nfection
	Diseased	Cured	Diseased	Cured
Staph. Aureus	13	10	21	16
Ps. aeruginosa	10	8	17	15
Staph. Epidermosa	12	12	20	16
Esch. coli	5	3	4	2
Proteus	2	1	1	0
Streptococci	4	3	3	2
Micrococcus luteus	6	5	7	5
Bacillus cerus	4	3	6	4
C. albicans	14	11	32	28
Aspergillus fumigatus	9	7	18	15
Fusarium solani	6	5	13	7
Aspergillus niger	5	4	9	6
Penicillium species	3	2	7	5
Total	93	74	158	121

RESULTS

Table (28): The microbiological cure rates after topical honey compared to topical antimicrobial therapy

	Antimicrobial group		Honey	group
	Diseased	Cured	Diseased	Cured
Staph. Aureus	17	17 (100%)	17	9 (52.9%)
Ps. aeruginosa	15	11(73.3%)	12	12 (100%)
Staph. Epidermosa	17	14 (82.4%)	15	13 (86.7%)
Esch. coli	5	3 (60%)	4	3 (75%)
Proteus	2	1 (50%)	1	0 (0%)
Streptococci	4	3 (75%)	3	2 (66.7%)
Micrococcus luteus	6	4 (66.7%)	7	6 (85.7%)
Bacillus cerus	4	2 (50%)	6	5 (83.3%)
C. albicans	23	17 (73.9%)	23	22 (95.6%)
Aspergillus fumigatus	13	10 (76.9%)	14	12 (85.7%)
Fusarium solani	9	6 (66.7%)	10	6 (60%)
Aspergillus niger	8	5 (62.5%)	6	5 (83.3%)
Penicillium species	5	4 (80%)	5	3 (60%)
Total	128	97 (75.8%	123	98 (79.7%)

Keratopathy Group

Patients' characteristics

Age and Sex distribution

Keratopathy group comprised 50 patients; 26 males and 24 females with a male:female ratio= 13:12. Mean age of male patients was 56.5±6.7; range: 48-72 years, whereas that of female patients was 61.6±5.1; range, 50-72 years, with a non-significant difference (P>0.05) between both sexes as regards age distribution, (Table 29).

Moreover, there was a non-significant (X^2 =0.423, P>0.05) difference between number of patients with keratopathy randomly allocated in both treatment groups as regards sex distribution. Also, there was a non-significant difference between both treatment groups as regards age of patients included, (Table 30)

Table (29): Keratopathy patients' distribution according to gender and age

	Males	Females
Number (%)	26 (52%)	24 (48%)
Age (years)	56.5±6.7 (48-72)	61.6±5.1 (50-72)

Data are presented as number & mean±SD, percentages & ranges are in parenthesis

Table (30): Keratopathy patients' distribution according to gender and age among both groups

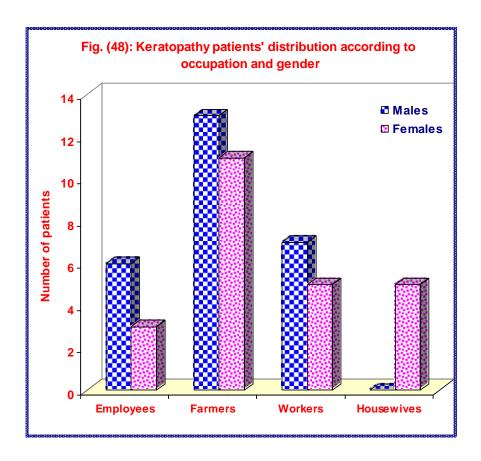
	Antimicrobial group (n=25)	Honey group (n=25)
M:F	14:11	12:13
Age (years)	58.3±6.1	59.6±6.9
	(48-72)	(48-72)

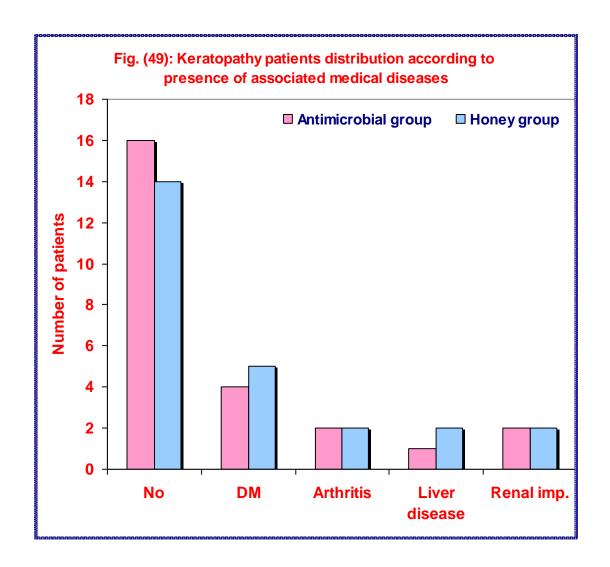
Data are presented as ratios & mean±SD, ranges are in parenthesis

Occupation

The majority of patients were farmers; 24 patients (48%) with male to female ratio of 1.8:1, 12 patients (24%) were manual workers with male to female ratio of 1.4:1 and 9 patients (18%) were employees with male to female ratio of 2:1. Five female patients (10%) were housewives, (Table 31, Fig. 6).

Table (31): Keratopathy patients' distribution according to their occupation


Sex	Males	Females	Total
Occupation			
Employees	6 (23.1%)	3 (12.5%)	9 (18%)
Farmer	13 (50%)	11 (45.9%)	24 (48%)
Workers	7 (26.9%)	5 (20.8%)	12 (24%)
Housewives	0	5 (20.8%)	5 (10%)
Total	26 (52%)	24 (48%)	50 (100%)


General Diseases

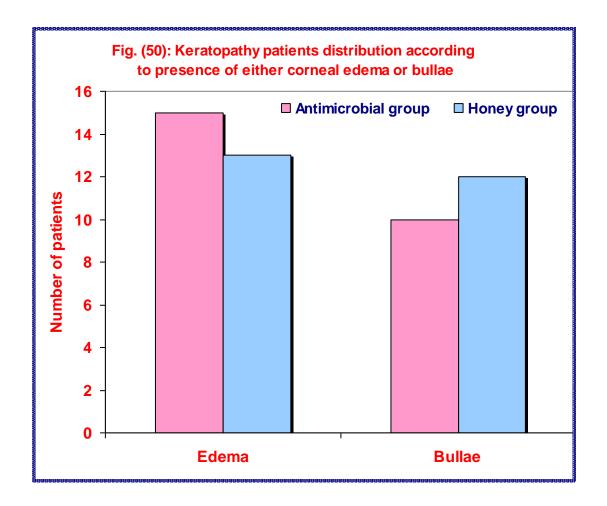
Thirty patients (58%) free of systemic diseases; while the other 20 patients had variant systemic diseases. Nine patients (18%) were diabetics, 4 patients (8%) had arthritis, 3 patients (6%) had liver disease and 3 patients had renal impairment, (Table 32, Fig. 49). There was a non-significant difference between patients included in antimicrobial and honey groups as regards the frequency of systemic diseases, (X²=0.873, P>0.05).

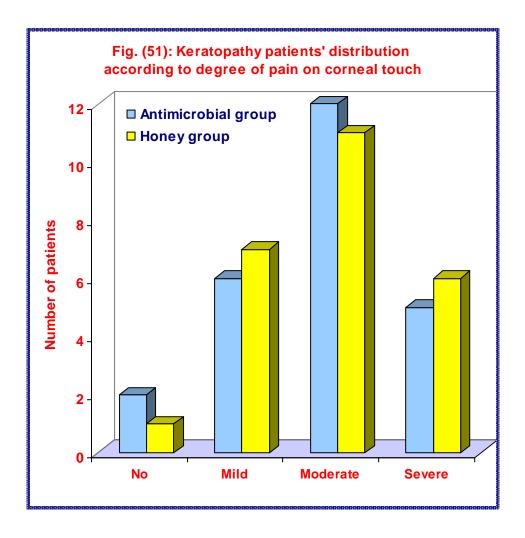
Table (32): Keratopathy patients' distribution according to the presence of systemic diseases

	Group	Antimicrobial	Honey	Total
No system	ic diseases (n=30)	16	14	160 (80%)
Systemic diseases	Diabetes mellitus	4	5	13 (6.5%)
(n=20)	Arthritis	2	2	10 (5%)
	Liver diseases	1	2	9 (4.5%)
	Renal impairment	2	2	3 (1.5%)
Total		25	25	50 (100%)

Ophthalmic Examination

Corneal Bullae

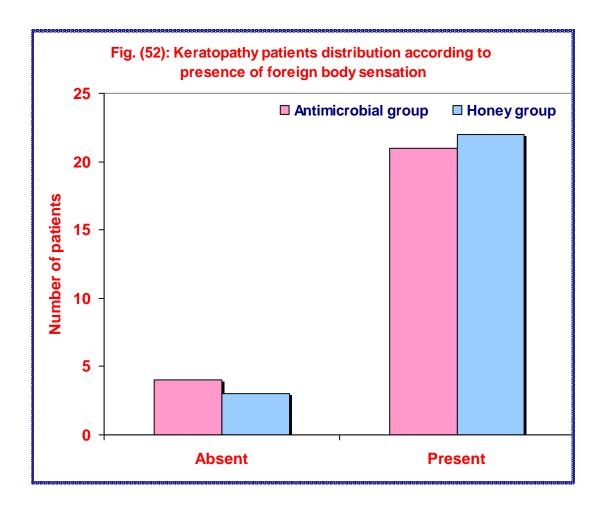

Twenty-eight patients (56%) had corneal edema; 15 in antimicrobial group and 13 patients in honey group. While the other 22 patients (44%) had corneal bullae 10 in antimicrobial group and 12 patients in honey group with a non-significant difference between both groups, (X²=0.108, P>0.05), (Fig. 50).


Pain sensation

Only 3 patients (6%) had no pain on touch, 13 patients (26%) had mild pain, 29 patients (58%) had moderate pain and 11 patients (22%) had severe pain. There was a non-significant difference between antimicrobial and honey groups, ($X^2=0.234$, P>0.05) as regards the grade of pain on corneal touch, (Table 33, Fig. 51).

Table (33): Keratopathy patients' distribution according to the degree of pain on corneal touch

	Antimicrobial group	Honey group	Total
No	2 (8%)	1 (4%)	3 (6%)
Mild	6 (24%)	7 (28%)	13 (26%)
Moderate	12 (48%)	11 (44%)	29 (58%)
Severe	5 (20%)	6 (24%)	11 (22%)
Total	25 (100%)	25 (100%)	50 (100%)



Foreign body sensation

Seven patients (14%) had no foreign body sensation, while the other 43 patients had foreign body sensation. There was a non-significant difference between antimicrobial and honey groups, ($X^2=0.538$, P>0.05) as regards the grade of pain on corneal touch, (Table 34, Fig. 52).

Table (34): Keratopathy patients' distribution according to the presence of foreign body sensation

	Antimicrobial group	Honey group	Total
Absent	4 (16%)	3 (12%)	7 (14%)
Present	21 (84%)	22 (88%)	43 (86%)
Total	25 (100%)	25 (100%)	50 (100%)

Corneal Haziness

Twenty-one patients (42%) had mild corneal haziness, 18 patients (36%) had moderate corneal haziness and 11 patients (22%) had severe corneal haziness. There was a non-significant difference between antimicrobial and honey groups, (X²=0.705, P>0.05) as regards the degree of corneal haziness, (Table 35, Fig. 53).

Table (35): Keratopathy patients' distribution according to degree of corneal haziness

	Antimicrobial group	Honey group	Total
Mild	11 (44%)	10 (40%)	21 (42%)
Moderate	8 (32%)	10 (40%)	18 (36%)
Severe	6 (24%)	5 (20%)	11 (22%)
Total	25 (100%)	25 (100%)	50 (100%)

<u>Ophthalmic Diagnosis</u> (Case Presentation)

Figure (54) represents postoperative keratopathy showing corneal epithelial edema (a) and bullous keratopathy (b).

Fig. (54):a: Corneal epithelial edema b: Bullous keratopathy

Clinical Outcome

A) Pain

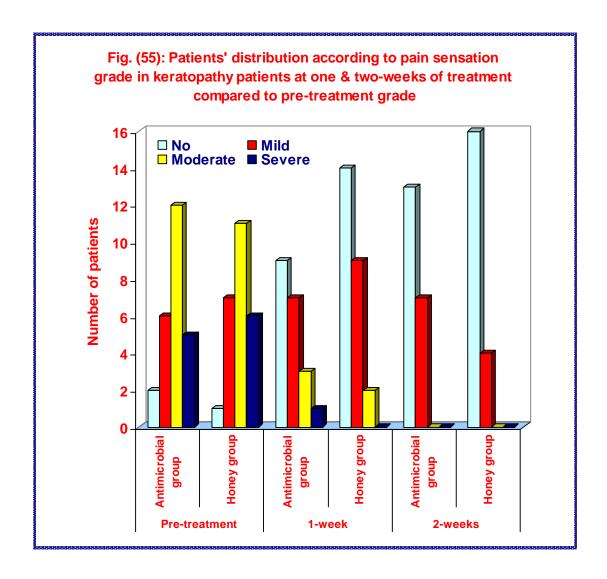

❖ Both lines of treatment could achieve dramatic pain relief with a significant increase in number of patients with less pain-grade at 1-week and 2-weeks in comparison to pretreatment pain grade with a non-significant difference between the frequencies of pain grades reported 2-weeks after local therapy compared to that reported on the first week. Moreover, there was a non-significant difference between frequency of patients according to pain grade between both groups throughout the study period (Table 36, Fig. 55).

Table (36): Pain grade determined at 1-week and 2-weeks in comparison to pretreatment pain grade in both groups

Time	Pre-treat		1-w		2-w	
Pain	Antimicrobial	Honey	Antimicrobial	Honey	Antimicrobial	Honey
grade	group	group	group	group	group	group
No	2	1	9	14	13	16
Mild	6	7	7	9	7	4
Moderate	12	11	3	2	0	0
Severe	5	6	1	0	0	0
P ₁			<0.01	<0.001	<0.001	<0.001
P ₂					>0.05	>0.05
P ₃	>0.05		>0.05		>0.05	

 P_1 : significant versus pre-treatment

P₂: significant versus 1-week

B) Foreign body sensation

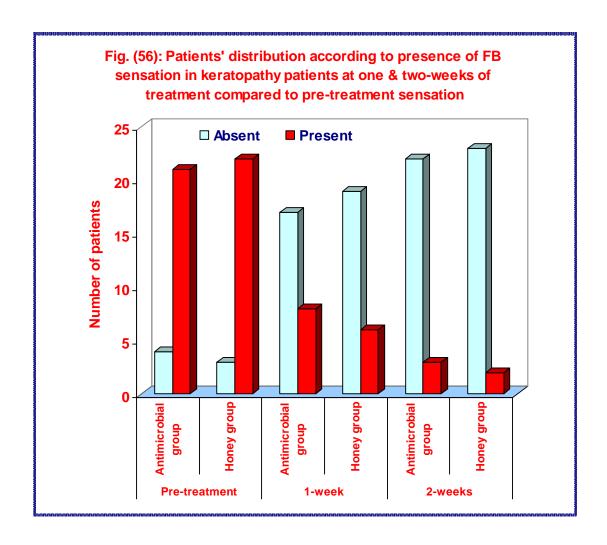
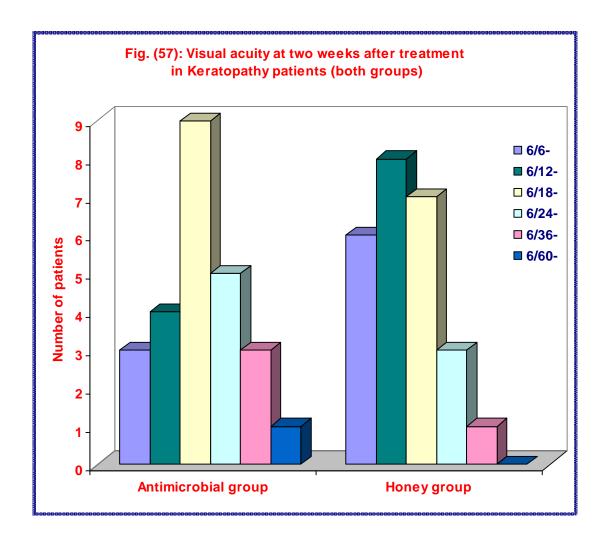

❖ Topical treatment reduced foreign body sensation significantly in comparison to pre-treatment both at one and two weeks of treatment, with a significant difference in favor of results obtained at 2 weeks, but with a non-significant difference between frequency of patients according to foreign body sensation between both groups, (Table 37, Fig. 56).

Table (37): Patients' distribution according to frequency of foreign body sensation at 1-week and 2-weeks in comparison to pre-treatment pain grade in both groups

Time	Pre-treat		1-w		2-w	
FB	Antimicrobial	Honey	Antimicrobial	Honey	Antimicrobial	Honey
sensation	group	group	group	group	group	group
Absent	4	3	17	19	22	23
Present	21	22	8	6	3	2
P ₁			<0.01	<0.001	<0.001	<0.001
P ₂					<0.001	<0.001
P ₃	>0.05		>0.05		>0.05	

 P_1 : significant versus pre-treatment

P₂: significant versus 1-week



C) Visual Acuity

❖ Both lines of treatment could achieve improvement of visual acuity with a significant increase of number of patients with improved visual acuity at 2-weeks in comparison to pretreatment acuity, but with non-significant difference between frequency of patients' visual acuity between both groups (Table 38, Fig. 57).

Table (38): Visual acuity achieved at 1-week and 2-weeks in comparison to pretreatment acuity in both groups

Time	Pre-treat		1-week		2-week	
Visual	Antimicrobial	Honey	Antimicrobial	Honey	Antimicrobial	Honey
Acuity	group	group	group	group	group	group
6/6	0	0	2	4	3	6
6/12	6	7	7	6	4	8
6/18	8	6	7	5	9	7
6/24	5	4	3	4	5	3
6/36	2	3	2	3	3	1
6/60	1	2	3	2	1	0
3/60	2	1	1	1	0	0
1/60	1	2	0	0	0	0

D) Corneal haziness

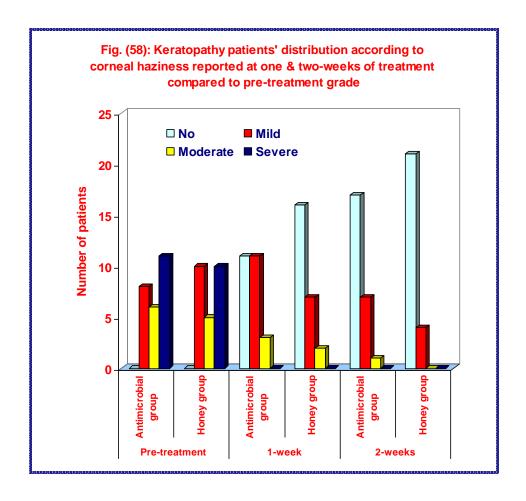

❖ Topical therapy used in keratopathy patients (both groups) significantly reduced the frequency of corneal haziness both at 1 and 2-weeks in comparison to pre-treatment, (Table 39, Fig. 58).

Table (39): Patients' distribution according to degree of corneal haziness determined at 1-week and 2-weeks in comparison to pre-treatment degree of haziness

Time	Pre-treat		1-w		2-w	
Corneal	Antimicrobial	Honey	Antimicrobial	Honey	Antimicrobial	Honey
haziness	group	group	group	group	group	group
No	0	0	11	16	17	21
Mild	8	10	11	7	7	4
Moderate	6	5	3	2	1	0
Severe	11	10	0	0	0	0
P ₁			<0.001	<0.01	<0.001	<0.001
P ₂					<0.01	<0.001
P ₃			<0.05		>0.05	

P₁: significant versus pre-treatment

P₂: significant versus 1-week

