Contents

List of Tables		
List of Figures		
List of Abbreviations		
Chapter one: INTRODUCTION		
1.1.General Remarks	1	
1.2. Literature Review	2	
1.3. Types of Disinfectants	3	
1.3.1. Chlorine Disinfection	3	
1.3.2. Chloramine Disinfection	4	
1.3.3. Chlorine Dioxide Disinfection	5	
1.3.4. Ozone Disinfection	6	
1.3.5. Ultraviolet Disinfection	7	
1.4. Disinfection By-products	8	
1.4.1. History of Disinfection By-products	9	
1.4.2. Trihalomethanes	10	
1.4.3. Other Disinfection By-products	10	
1.5. Factors Affecting the Formation of DBPs	10	
1.5.1. Disinfectant Concentration	12	
1.5.2. Residence Time	12	
1.5.3. Temperature	12	
1.5.4. pH	13	
1.5.5. Total Organic Carbon Concentrations	13	
1.5.6. Bromide Concentrations	14	
1.6. Health Risks	14	

1.6.1. Animal Studies	
1.6.2. Human Studies	15
1.7. Water pollutants	16
1.8. Regulations	16
1.9. Removal of DBPs After Formation	16
1.9. 1. Oxidation	17
1.9. 2. Aeration	17
1.9.3. Adsorption	18
1.10. Activated Carbon	19
1.10.1. Preparation of active carbon	20
1.10.2. Methods of activation	22
1.10.3. Structure of activated carbon	22
1.10.4. Surface functional groups on active carbon	25
1.11. olive stone as procedure for activated carbon	26
1.12. Significance of the research	30
1.13. Aim of work	32
Chapter two: Experimental	
2.1. Materials	34
2.1.1. Adsorbates	34
2.1.2. Adsorbents	35
2.1.2.1. physical activation	37
2.1.2.2. chemical activation	37
2.2. Methods	38
2.2.1.Characterization of the prepared carbons	38
2.2.1.1. Bulk density(Packed density)	38
2.2.1.2. pH Measurements	38
2.2.1.3. FT- IR analysis	39
	i e

2.2.1.4. Scanning electron microscope(SEM)	39
2.2.2. Analytical methods	39
2.2.2.1. Standard Solutions of THMs	39
2.2.3. Adsorption experiments	
2.2.3.1. Preliminary Tests	40
2.2.3.2. Effect of contact time (Minimum contact time determination)	41
2.2.3.3.Effect of adsorbate concentration	41
2.2.3.4. Effect of adsorbent mass	42
2.2.3.5. Effect of pH (Optimum pH determination)	42
2.2.3.6. Adsorption Isotherm	42
2.2.3.7. Temperature effect	43
2.2.4. Photodegradation experiment	44
Chapter three : RESULTS AND DISCUSSION	
3.1 Preparation of active carbons	45
3.1 Treputation of active carbonis	43
3.2. Characterization of the prepared carbons	45
-	
3.2. Characterization of the prepared carbons	45
3.2. Characterization of the prepared carbons 3.2.1. Bulk density(Packed density)	45 45
3.2. Characterization of the prepared carbons 3.2.1. Bulk density(Packed density) 3.2.2. pH 3.2.3. Identification of surface functional groups by the	45 45 46
3.2. Characterization of the prepared carbons 3.2.1. Bulk density(Packed density) 3.2.2. pH 3.2.3. Identification of surface functional groups by the FT- IR specta	45 45 46 47
3.2. Characterization of the prepared carbons 3.2.1. Bulk density(Packed density) 3.2.2. pH 3.2.3. Identification of surface functional groups by the FT- IR specta 3.2. 4. Pore structure analysis.	45 45 46 47 50
 3.2. Characterization of the prepared carbons 3.2.1. Bulk density(Packed density) 3.2.2. pH 3.2.3. Identification of surface functional groups by the FT- IR specta 3.2.4. Pore structure analysis. 3.2.5. Scanning Electron Microscope 	45 45 46 47 50 53
3.2. Characterization of the prepared carbons 3.2.1. Bulk density(Packed density) 3.2.2. pH 3.2.3. Identification of surface functional groups by the FT- IR specta 3.2. 4. Pore structure analysis. 3.2.5. Scanning Electron Microscope 3.3. Adsorption experiments	45 45 46 47 50 53 56
3.2. Characterization of the prepared carbons 3.2.1. Bulk density(Packed density) 3.2.2. pH 3.2.3. Identification of surface functional groups by the FT- IR specta 3.2. 4. Pore structure analysis. 3.2.5. Scanning Electron Microscope 3.3. Adsorption experiments 3.3.1. Selection of active carbons	45 45 46 47 50 53 56 56
3.2. Characterization of the prepared carbons 3.2.1. Bulk density(Packed density) 3.2.2. pH 3.2.3. Identification of surface functional groups by the FT- IR specta 3.2. 4. Pore structure analysis. 3.2.5. Scanning Electron Microscope 3.3. Adsorption experiments 3.3.1. Selection of active carbons 3.3.2. Factors affecting adsorption process	45 45 46 47 50 53 56 56 57

3.3.2.4. Effect of THMs concentration on adsorption	64
3.3.2.5. Effect of adsorbent mass on adsorption of THMs	66
3.3.2.6. Effect of pH value	69
3.3.2.7. Equilibrium adsorption isotherms of THMs	70
3.3.2.8. Isotherms modeling	72
3.3.2.9. Temperature effect	76
3.4. Photodegradation	78
References	
Summary	
Arabic Summary	

ACKNOWLEDGEMENT

Before all and above I pray my God for explicitly known and uncountable reasons.

I would like to express my deep gratitude to **Assistant Prof. Dr. Hisham Marwan Aly**, Assistant Professor of physical chemistry, Faculty of Science, Benha University, for his kind supervision, encouragement, fruitful discussions and active support during this work.

I would like to advance my sincere appreciation to **Prof. Dr. Abdel Hakim Mohamed Daifullah**, Professor of physical Chemistry, Hot Lab. Center, EAEA, for his keen interest and providing me the opportunity to conduct this study. I appreciate what he has done for me, suggesting this research point, and discussing the results of this work.

I would like to express my deep sincere thanks and appreciation to **Prof. Dr. Magdy Ahmed Rizk**, Professor of soil Chemistry, Egyptian Atomic Energy Authority (EAEA), for his supervision, suggestions, encouragement, and active support during the progress of this work.

I wish to express my appreciation to **Dr. Sobhy Mostafa Yakout** Lecturer of physical Chemistry, Hot Lab. Center, EAEA, for his supervision and fruitful discussions during the progress of this work.

Finally, I would like to express my deep thanks to my colleagues in Chemistry Department, Hot Laboratories Center, EAEA for their help and support. I am too obliged my parents , my wife, my daughter and my brothers .

MOHAMED

LIST OF TABLES

TABLE		PAGE
Table (1.1)	Chloroform developmental studies	15
Table (2.1)	Some characters of THMs	34
Table (3.1)	Preparation of active carbons	45
Table (3.2)	Bulk density and pH measurements	47
Table (3.3)	Textural characterstics of activated carbons derived from olive stone	50
Table (3.4)	Adsorbability of THMs using the prepared activated carbons	56
Table (3.5)	Kinetic parameters on the adsorption of THM	61
Table (3.6)	Freundlich and Langmuir parameters for adsorption of THMs	76
Table (3.7)	Apparent Pseudo-first-order kinetic rate constants, k_{app} , Half-times, $t^{0.5}$, and correlation coefficient values, R^2 , for the removal of THMs by different processes	86
Table (3.8)	Apparent Pseudo-second-order kinetic rate constants, k_{app} , and correlation coefficient values, R^2 , for the removal of THMs by different processes	87

LIST OF FIGURES

FIGURE		PAGE
Fig. (1.1)	Carbon atom arrangements in graphite crystal	23
Fig. (1.2)	Structures of carboxyl, phenolic hydroxyl and quinines carbonyl groups	26
Fig. (1.3)	Structures of carboxylic acid anhydrides and cyclic peroxide	26
Fig. (2.1)	Schematic diagram of the system used for the preparation of activated carbons from olive stone	36
Fig. (3.1)	Infrared spectrum of prepared carbons	49
Fig. (3.2)	The relation between concentration of H_3PO_4 (%) and surface area of activated carbons	52
Fig. (3.3)	The relation between concentration of H_3PO_4 (%) and total pore volume of activated carbons.	52
Fig. (3.4)	Scanning Electron Microscope(SEM) photograph of prepared carbons	55
Fig. (3.5)	Effect of agitation time on the adsorption of THMs . Experimental conditions employed: (V) = 5 ml ; (m) = $0.01~g~$; (C _o) = $100~\mu g/L$	58
Fig. (3.6)	The pseudo-first-order adsorption kinetics of THMs.	59
Fig. (3.7)	The pseudo-second-order adsorption kinetics of THMs.	60
Fig. (3.8)	The intraparticle diffusion plots for THMs adsorption.	64
Fig. (3.9)	Effect of concentration on adsorption of THM Experimental conditions employed: (V) = 5 ml; (m) = 0.02 g; initial THMs conc. (C _o) = $10\text{-}300~\mu\text{g/L}$	66
Fig. (3.10)	Effect of mass on adsorption of THMs at experimental conditions employed: (V) = 5 ml; (m) = 0.01 - 0.05 g; and initial conc conc. (C _o) = 100 µg/L	68
Fig. (3.11)	Effect of pH on the adsorption of THMs at experimental conditions employed: solution THMs: (V) = 5 ml; (m) = 0.01 g; (C_o) = 100 μ g/L.	70
Fig. (3.12)	Equilibrium Adsorption Isotherms of THMs.	71
Fig. (3.13)	Langmuir plots of THMs adsorption.	74
Fig. (3.14)	Freundlich plots of THMs adsorption	75
Fig. (3.15)	Effect of temperature on adsorption of chloroform. Experimental conditions employed: $V = 5$ ml; $(m) = 0.01$ g and initial conc. $(C_0) = 100 \mu g/L$	77

Fig. (3.16)	Effect of temperature on adsorption of boromoform. experimental conditions employed: solution THMs: (V) = 5 ml; (m) = 0.01 g and (C_o) = 100 μ g/L.	77
Fig. (3.17)	Removal of bormoform from aqueous solution through photodegradation only and photodegradation in the presence of OS P_{60} -2500 and photodegradation in the presence of OS P_{60} -2500 and TiO_2 . Data points relate to the following CHBr ₃ . Experimental conditions employed: (V) = 10 ml; (m) = 0.02 g; initial THMs conc. (C_0) = 100 µg/L	81
Fig. (3.18)	Removal of chloroform from aqueous solution through photodegradation only and photodegradation in the presence of OS P_{80} -2500 and photodegradation in the presence of OS P_{80} -2500 and TiO_2 . Data points relate to the following CHCl ₃ . Experimental conditions employed: solution volume (V) = 10 ml; adsorbent mass (m) = 0.02 g; initial THMs conc. (C_0) = 100 µg/L	82
Fig. (3.19)	Removal of dibormochloromethane from aqueous solution through photodegradation only and photodegradation in the presence of OS P_{70} -2500 and photodegradation in the presence of OS P_{70} -2500 and TiO_2 . Data points relate to the following CHBr $_2$ Cl. Experimental conditions employed: solution volume (V) = 10 ml ; adsorbent mass (m) = 0.02 g ; initial THMs conc. (C_o) = 100 $\mu g/L$.	83
Fig. (3.20)	Removal of dichlorobormomethane from aqueous solution through photodegradation only and photodegradation in the presence of OS P_{60} -2500 and photodegradation in the presence of OS P_{60} -2500 and TiO_2 . Data points relate to the following CHBrCl $_2$. Experimental conditions employed: (V) = 10 ml , (m) = 0.02 g , (C $_o$) = 100 $\mu g/L$.	84

LIST OF ABBREVIATIONS

ABBREVIATE

EDF Environmental Defense Fund

DBPs Disinfection By-Products**TTHMs** Total Trihalomethanes

HAAs Haloacetic Acids

MCL Maximum Contaminant Limit

U.S. EPA United States Environmental Protection Agency

CT (Concentration * Time)

SDWA Safe Drinking Water Act

NORS National Organics Reconnaissance Survey

IUGR Increased Risk of Intrauterine Growth Retardation

AC Activated Carbon

VOCs
 Volatile Organic Compounds.
 EBCTs
 Empty Bed Contact Times
 GAC
 Granular Activated Carbon.
 PAC
 Powdered Activated Carbon.

GC Gas Chromatography

SEM Scanning Electron Microscope

BET Brunauer, Emmett and Taller isotherm