Summary

Long ago the packaging science had a vital and important role in human life and this was due to its usage in the protection of foods. Nowadays packaging science no longer limited to be useful in food protection only; as it's now become very important in many things where its main functions are still to make food and other products easy to transport.

From this point our study focus on the metallic package as it is exposed to very big danger called corrosion and this represents a big threat on the economy and human life. In our research we choose polyaniline as pigment in epoxy primer because of its electrical properties which make it very affect in corrosion inhibition. Firstly; we prepared nano-zinc phosphate tetra hydrate and then prepared polyaniline zinc phosphate nanocomposite by in situ polymerization. Polyaniline prepared was proved by FTIR technique, and its particle size was characterized by TEM which indicated that polyaniline lies in nano scale with average diameter equal (57nm); also XRD indicated that polyaniline nanocomposite prepared was semi crystalline unlike pure polyaniline which is amorphous. TGA also revealed that polyaniline nanocomposite is more stable than pure polyaniline.

Epoxy primer modified with different ratio of polyaniline prepared; then it was applied on the panels under investigations. The painted panels were immersed in NaCl solution (0.1M). The corrosion rate of tested panels and its inhibition was determined by

some known methods of corrosion rate measurements techniques such as:

1- Gravimetric techniques

Generally, the corrosion rate of tested panels was found to be decreased with increasing the amounts of polyaniline nanocomposite, up to certain limit due to the largest molecules and the crowded between them which lead to irregular distribution. The best ratio of polyaniline was 0.2 gm.while the worst was 0.5 gm.

2- Physical tests

Painted films formulations which contain different PANI- Zn3(PO4)2.4H2O nanocomposite ratio show better corrosion protection from the blank, and this is due to the role of PANI in corrosion protection where it is work by the virtue of its redox behavior. PANI is expected to capture the ions liberated during the corrosion reaction of steel in the presence of NaCl, water and oxygen get doped and liberate the dopant ions which form a passivating layer even when there is initiation of the corrosion process at the substrate. Thus, it acts as a self healing coating with improved corrosion resistance. Since the release of the ions by PANI would be facilitated if it is in the form of thin layer on nano- Zn_3 (PO_4)₂.4H₂O support its corrosion prevention will become more effective than if it was in form of solid particle.

The morphology of steel panels coated with epoxy only (Blank) and the panel coated with formulation containing

0.2gm polyaniline nanocomposite after immersed them in corrosive medium (NaCl 0.1M) by SEM; where it seems that, the formulation containing 0.2gm polyaniline nanocomposite gives the highest corrosion resistance due to the healing effect of polyaniline nanocomposite.

3- Electrochemical methods

Two polarization measurements were used to indicate the role of polyaniline in corrosion protection as the following:

a) Potentiostatic technique

The Potentiostatic measurements confirm that the addition of polyaniline hindered the corrosion attack on the surface of the steel electrode and suppressed the cathodic and anodic reactions. The data show that i_{corr} decreased with the addition of different amounts of polyaniline nanocomposite up to certain limit, due to the increase in the blocked fraction of the electrode surface (Θ) .

b) Potentiodynamic anodic polarization technique

This technique was studied to determine the pitting potential of the tested panels at 0.1M of NaCl. The results indicate that at concentrations of a particular no pitting reaction occurred.

Generally; the mechanism of adsorption was also studied at different amounts of the polyaniline nanocomposite. It was found that, the adsorption of polyaniline nanocomposite follows the Langmuir adsorption isotherm.

List of Tables

Table NO.	Title	Page
1.1	types of corrosion.	15
2.1	Degree of fineness.	58
2.2	The adhesion scale.	62
2.3	Rating of Failure Scribe.	68
3.1	gel permeation chromatography (GPC)results.	74
3.2	TGA of PANI and its composite.	76
3.3	Position of pure PANI peaks.	78
3.4	Position of PANI nanocomposite peaks.	79
3.5	The measurements of painted film.	83
3.6	Rate of corrosion (mpy) obtained from weight loss measurements at different	85
	amounts of polyaniline nanocomposite in	
	0.1M NaCl at different time of immersion at 298K.	
3.7	Adsorption parameters of polyaniline nanocomposite.	92
3.8	Results of physical tests.	93
3.9	The electrochemical parameters obtained	99
	from the potentiostatic polarization	
	measurements of steal.	

3.10	Adsorption parameters	of	polyaniline	101
	nanocomposite.			

List Of Figures

Figure No.	Title	Page
1.1	Polymer-layered nanocomposites.	5
1.2	Schematic illustration for synthesis of	6
	Nylon-6/clay nanocomposites.	
1.3	Schematic depicting the intercalation	7
	process between a polymer melt and an	
	organic modified layered silicate.	
1.4	Electric double layer at a metal surface.	11
1.5	Iron equilibrium diagram.	12
1.6	Polarization of iron.	14
1.7	Barrier pigment effect.	20
1.8	The corrosion of iron& the cathodic	24
	protection by sacrifial anode and	
	impressed current.	
1.9	Mechanism of cathodic (Zinc-Rich)	25
	protection.	
1.10	Schematic illustrate the role of the ratio	26
	between (P.V.C) to(C.P.V.C).	
1.11	Schematic representation of the proposed	
	of the left, polaron structure and right,	34
	bipolaron structure of polyaniline.	
2.1	Cell.	52
2.2	Working Electrode.	52
2.3	Diagram of the LCR Hi Tester.	53
2.4	Reaction mechanism of polyaniline.	55
2.5	Scraper.	59

2.6	Tapered Gage.	59
2.7	Stepped Gage.	60
2.8	Blister size no (2).	65
2.9	Blister size no (4).	65
2.10	Blister size no (6).	66
2.11	Blister size no (8).	66
2.12	Examples of area percentage.	67
3.1	EDAX of PANI- $Zn_3(PO_4)_2.4H_2O$	72
	nanocomposite.	
3.2	FTIR of pure polyaniline, nano	73
	polyaniline.	
3.3	TGA curves of PANI and its composite.	77
3.4	XRD of PANI and its composite.	80
3.5	XRD of nano Zinc Phosphate tetrahydrate.	80
3.6	Orthorhombic unit cell & crystallographic	81
	axes.	
3.7	$TEM ext{ of } Zn_3 (PO_4)_2.4H_2O.$	82
3.8	TEM of PANI- Zn_3 (PO ₄) ₂ .4H ₂ O nano -	82
	composites.	
3.9	Relation between frequency & conductivity	87
3.10	Relation between frequency & dielectric	87
3.11	phosphatisation of the iron surface by zinc	88
	phosphate.	
3.12	The effect of time of immersion in days on	89
	the inhibition efficiency of different	
	amounts of polyaniline nanocomposite on	
	steel in 0.1M NaCl.	
	I	

3.13	The effect of amounts change of polyaniline nanocomposite on their inhibition efficiency on steel in 0.1 M NaCl after 35 days of immersion at 298K.	90
3.14	The plot of Langmuir adsorption isotherm for the different amounts of polyaniline in 0.1M NaCl after 35days of immersion.	91
3.15	painted film after corrosion test.	94
3.16	panels after rusting test and paint removal.	94
3.17	SEM of steel painted without any additives	96
	from polyaniline after corrosion.	
3.18	SEM of painted steel modified with polyaniline nanocomposite (0.2gm) after corrosion.	96
3.19	Schematic mechanism of corrosion protection.	97
3.20	Potentiostatic polarization curve of painted steew with epoxy modified and unmodified with polyaniline nanocomposite with different ratios 0.1M NaCl. Relation between the inhibition efficiency	98
3.22	and molar amounts of polyaniline nanocomposite in 0.1M NaCl at 298K. The plot of Langmuir adsorption isotherm	100
	for the different amounts of polyaniline in 0.1 M NaCl.	101

3.23	Potentiodynamic anodic polarization	103
	curves of steel at different amounts of	
	PANI.	
3.24	Pitting potential as a function of amounts	104
	of PANI	

List Of Abbreviations

PANI	Polyaniline
nm	Nanometer
PNCs	Polymer nanocomposites
LDH	Layer double hydroxide
E	Potential
I	Current
P.V.C.	pigment volume concentration
C.P.V.C.	critical pigments volume concentration
$Zn_3 (NO_3)_2.6H_2O$	zinc nitrate hexahydrate
$(NH_4)_2HPO_4$	Di-ammonium hydrogen orthophosphate
APS	Ammonium peroxodisulphate
FTIR	Fourier transform inferred
GPC	gel permeation chromatography
TGA	Thermal gravimetry analysis
XRD	X-ray diffraction
2 θ	Angle of incidence of X-rays diffracting
	planes
λ	Wave length

TEM	Transmission electron microscope
EDX	Energy Dispersive X-ray photoelectron spectroscopy
SEM	Scanning Electron Microscope
SCE	Saturated calomel electrode
W	Corrosion rate in present of inhibitor
W^o	Corrosion rate in absence of inhibitor
$oldsymbol{ heta}^{\prime\prime}$	Surface coverage
\boldsymbol{A}	Surface area
t	Time of immersion in days
IE	Inhibition efficiency
E_{corr}	Corrosion potential
i_{corr}	Corrosion rates in present of inhibitor
$i^o_{\it corr}$	Corrosion rate in absence of inhibitor
ε	Dielectric constant
L	Thickness in m
Cs	Capacity in F
M_w	Average molecular weight
M_n	Number average

тру	Mils per year (1mils= 0.0254mm)
amount _{inh}	Inhibitor amount
K_{ads}	The adsorption equilibrium constant
ΔG_{ads}	The change of the free energy
R	General gas constant = 8.314 Joule/mole(k)
T	Temperature with Kelvin