Contents

1. Introduction.	1-2
2. Aim of the essay	3
3. Review of literature:	
• Anatomy of the abdominal wall.	4-32
• Etiology and complications of burst abdomen.	33-81
 Methods of closure of burst abdomen. 	82-138
• Recent trends in management of burst abdomen.	139-155
• Figures.	156-188
4. Summary and conclusion.	189-191
5. References.	192-207
6. Arabic summary.	

List of Figures

- **Fig.** (1): Embryo at 12 weeks at time of abdominal wall formation
- Fig. (2): Frontal view of the anterolateral wall layers.
- Fig. (3): External Oblique Muscle.
- Fig. (4): Internal Oblique Muscle.
- Fig. (5): Transversus Abdominis Muscle.
- Fig. (6): Rectus abdominus.
- **Fig. (7):** The concept of bilaminar aponeuroses of the external oblique muscles.
- Fig. (8): Deep arterial system of anterior abdominal wall.
- Fig. (9): Superficial veins of the anterior abdominal wall.
- **Fig.** (10): Vertical midline incision with gentle curve around the umbilicus.
- Fig. (11): Paramedian incision.
- Fig. (12): Upper abdominal paramedian incision.
- Fig. (13): Lower Paramedian incision.
- Fig. (14): McBurney muscle-splitting incision.
- Fig. (15): Disadvantages of the closure of vertical incision
- **Fig.** (16): The subcostal or transverse incision obviates the disadvantages of the closure of the vertical incision.
- Fig. (17): Stages of the mass closure of the midline abdominal incision
- Fig. (18): Mass closure of the paramedian incision
- **Fig. (19):** Retention sutures tied and held in position supported by rubber tubing.
- Fig. (20): Vacuum-assisted Bogota bag dressing.

- Fig. (21):Six anatomic subunits as classified for abdominal wall reconstruction.
- Fig. (22): Retention Sutures.
- **Fig. (23):** The VAC.
- Fig. (24): Mechanism of action of the VAC.
- Fig. (25): Bogotá's bag in combination with VAC technique.
- Fig. (26): Modified "components separation technique.
- Fig. (27): Endoscopic component separation technique.
- **Fig. (28):** Using of skin grafting in the coverage of a large abdominal wall defect.
- **Fig. (29):**Cross-sectional schematic diagram of the technique for turnover flap creation from the anterior rectus abdominis sheath..
- Fig. (30): Local transpositional and rotational flaps.
- Fig. (31): Antero-lateral thigh flap.
- Fig. (32): Anterio-lateral thigh flap elevation.
- Fig. (33): Patterns of muscle flap vascular anatomy.
- Fig. (34): Flaps used in abdominal wall reconstruction.
- Fig. (35): Arc of rotation of rectus abdominis.
- Fig. (36): Anatomy and dissection of the tensor fasciae latae.
- **Fig. (37):** The tensor fascia lata myo-cultaneous flap elevated as island flap.
- Fig. (38): Tensor fascial lata free flap.
- Fig. (39): Course of the rectus femoris muscle.
- Fig. (40): Elevated rectus femoris flap for abdominal wall defect.
- Fig. (41): Technique of sandwitch omental flap.
- Fig. (42): Dissection of the space for tissue expander placement.

- Fig. (43): Tissue expanders partially expanded in lateral abdominal wall.
- Fig. (44): Soft tissue defect closed with expanded flap.
- **Fig.(45):** Forty-two-year-old man with necrotizing pancreatitis underwent 15 debridements, Vicryl mesh closure, and split thickness skin graft.
- **Fig. (46):** Schematic representation of inlay repair technique with complete intraperitoneal placement of mesh implants.
- **Fig. (47):** Scanning electron microscopy images of the appearance of the different prosthetics.
- **Fig. (48):** Site of mesh placement during the use of mesh to augment the abdominal wall after component separation technique.
- Fig. (49): Sheet of AlloDerm.
- Fig. (50): Example of interpositional placement of AlloDerm.
- **Fig. (51):** Permacol mesh sutured in place over exposed bowel 13 days after initial laparotomy for faecal peritonitis.
- Fig. (52): Appearance of Permacol mesh in situ after 4 weeks.
- **Fig. (53):** At 12 months postoperatively, the patient was re-referred with most of the skin graft in situ.
- Fig. (54): Examples of complex abdominal wall defects.
- **Fig.(55):**Examples of abdominal wall defects immediately preoperatively.
- **Fig.(56):** Creation of autogenous pedicled, demucosalized intestinal sheet.
- **Fig.(57):** The reconstructed abdominal wall with regenerated mucosa 6 months postoperatively.
- **Fig.(58):** Reconstructed abdominal wall 12 months postoperatively and 60 months postoperatively.

- **Fig. (59):** The skin of the umbilicus is being attached to the linea alba with non-absorbable suture.
- Fig. (60): Cone shaped flap.
- **Fig. (61):** Schematic drawing of the inverting bilateral figure of eight suture.
- **Fig. (62):** Stitch-sequences after implantation of the polypropylene mesh between the posterior rectal sheath and the rectus abdominis.

List of Tables

Table (1):	Biological process of wound repair.	37
Table (2):	Suture materials in common use in surgery: non-absorbable	54
Table (3):	Suture materials in common use in surgery: absorbable	55
Table (4):	Risk factor scores for abdominal wound dehiscence	79
Table (5):	Risk categories for wound dehiscence	79
Table (6):	Repair of partial abdominal wall defects	87
Table (7):	Repair of complete abdominal wall defects	88
Table (8):	Management of abdominal wall defects	92
Table (9):	Flap algorithm	119

List of Abbreviations

Abbreviation Meaning

ADM : Acellular Dermal Matrix
ALTF : Antero-Lateral Thigh Flap

COPD: Chronic Obstructive Pulmonary Disease

DIEA: Deep Inferior Epigastric ArteryDSEA: Deep Superior Epigastric Arterye PTFE: Expanded Polytetraflouroethylene

ECG: Electro Cardiogram

EGF: Epidermal Growth Factor

ENT: Ear Nose and Throat

FGF: Fibroblast Growth Factor

FTT: Free Tissue Transfer

HMWK: High Molecular Weight Kinogen

IL : InterlukeinsINF : Interferons

LDM: Latissimus Dorsi Muscle

LMWH: Low Molecular weight Heparin
PDGF: Platelet-Derived Growth Factor

PTFE: Polytetraflouroethylene

RF: Rectus Femoris

SFS: Superficial Fascial System STSG: Split Thickness Skin Graft

TE: Tissue Expansion
TFL: Tensor Fascia Lata

TGF- β : Transforming Growth Factor β

TRAM: Transverse Rectus Abdominis Muscle

UFH : unfractionated HeparinVAC : Vacuum Assisted Closure