Contents

	Page
Contents	i
List of Tables	v
List of Figures	vii
Aim of the work	ix
Chapter (1)	
1. Introduction	
1.1 Chromium occurrence in the environment	1
1.2 Physcial and chemical properties for chromium	3
1.3 Common uses of chromium	5
1.4 Environmental and health effects of chromium	7
1.5 Analytical techniques for chromium determination	10
1.5.1 Atomic absorption technique	10
1.5.1.1 Atomic absorption analysis	11
1.5.1.2 Basis of atomic absorption technique	15
1.5.1.3 Atomic absorption interference	16
1.5.1.3.1 Spectral interference	17
1.5.1.3.2 Physical interference	18
1.5.1.3.3 Ionization interference	19
1.5.1.3.4 Chemical interference	20
1.5.1.4 Methods of overcoming of chemical interference	21
1.5.1.4.1 Standard addition	21
15142 Matrix modification	22

	Page
1.5.1.4.3 Matrix matching	23
1.5.1.4.4 Removal of the interfering ion	23
1.5.1.4.5 Use a hotter flame	23
1.5.1.4.6 Addition of a releasing agent	23
1.5.1.5 Atomic absorption literature survey	24
1.5.2 Spectrophotometric technique	27
1.5.2.1 Basis of spectrophotometric technique	27
1.5.2.2 Spectrophotometric chromium survey	29
Chapter (2)	
2. Experimental	37
2.1 Materials	37
2.2 Solutions	37
2.2.1 Reagents	38
2.2.1.1 Thymol blue (TB)	38
2.2.1.2 Dimethyl yellow (DMY)	38
2.2.2 Potassium dichromate	38
2.2.3 Acids	38
2.2.4 Acetate buffer	39
2.2.5 Standard stock solutions (1000 μg/mL)	39
2.2.6 Sample dissolution procedure	40
2.3 Instrumentation	40
2.4 Calibration and recommended procedure for Atomic	41
absorption	
2.5 Factors affecting spectrophotometric studies	42
2.5.1 Effect of pH	42
2.5.2 Effect of volume of buffer	43
2.5.3 Effect of reagent concentration	43

	Page
2.5.4 Effect of sequence of addition	44
2.5.5 Effect of time and temperature	44
2.5.6 Effect of foreign ions (interference)	45
2.5.7 Procedure for spectrophotometric determination of	
chromium (VI) using TB reagent	45
2.5.8 Procedure for spectrophotometric determination of	
chromium (VI) using DMY reagent	46
2.6 Molar ratio method	46
2.7 Continuous variation method	47
Chapter 3	
3. Results and discussion	49
3.1 Determination of chromium by atomic absorption technique	49
3.1.1 Optimization of parameters by atomic absorption	50
technique	
3.1.1.1 Flame composition	50
3.1.1.2 Observation height	52
3.1.1.3 Repeatability	55
3.1.1.4 Calibration curve	
3.1.2 Interferences studies	59
3.1.2.1 Effect of diverse ions	59
3.1.2.2 Effect of mineral acids	61
3.2 Spectrophotometric determination of chromium (VI) using	
thymol blue and dimethyl yellow reagents.	63
3.2.1 The optimum reaction conditions for complex formation	63
3.2.1.1 Effect of pH	63
3.2.1.2 Effect of reagent concentration	63

	Page
3.2.1.3 Effect of sequence of addition	64
3.2.1.4 Effect of time and temperature	70
3.2.1.5 Influence of foreign ions	71
3.2.2 Molar ratio of complexes	75
3.2.3. Validation of the method	75
3.2.3.1. Linearity	75
3.2.3.2. Detection and quantification limits	79
3.2.3.3 Accuracy and precision	79
3.3 Applications	81
Summary	91
Conclusion	95
References	
Arabic Summary	

List of Tables

		Page
Table 1	Effect of acetylene flow on 3 μg/mL Cr absorbance	53
Table 2	Effect of burner height on the absorbance of 3 $\mu g/mL$ Cr	54
Table 3	Repeatability of 3 μg/mL Cr	57
Table 4	Repeatability of blank	57
Table 5	Calibration curve of chromium using fuel rich air acetylene	58
Table 6	Tolerance limit of diverse ions on the determination of 3 $$ µg/mL of Cr	60
Table 7	Effect of mineral acids concentrations on 3 $\mu g/mL$ Cr absorbance	62
Table 8	Effect of pH on the absorbance of chromium (VI) using TB and DMY reagents.	66
Table 9	Effect of volume of buffer on the absorbance of chromium (VI) using TB and DMY reagents.	67
Table 10	Effect of reagent concentration on the absorbance of chromium (VI) using TB and DMY reagents.	68
Table 11	Effect of sequence of addition on the absorbance of chromium (VI) using TB and DMY reagents.	69
Table 12	Effect of time on the absorbance of chromium (VI)	72

		Page
	using TB and DMY reagents.	
Table 13	Effect of temperature on the absorbance of chromium (VI) using TB and DMY reagents.	73
Table 14	Tolerance limits for the influence of foreign ions on the formation of Cr complexes with TB and DMY reagents	74
Table 15	Analytical data and characteristics of the proposed spectrophotometric and AA methods for the determination of chromium	80
Table 16	Determination of chromium in International and Egyptian standard samples by atomic absorption spectroscopy	82
Table 17	Chemical analysis of major and trace elements for serpentinite rocks from gabal el shalol area, S. E. D.	85
Table 18	Comparison between Cr content in geological samples determined by ICP – MS and AAS	86
Table 19	Major elements analysis of minerals under study by AAS	87
Table 20	Chemical analysis of chromium in minerals under investigation by AAS	87
Table 21	Chemical analysis of chromium (VI) in water samples under investigation by spectrophotometry using TB and DMY reagents	89

List Of Figures

		Page
Figure 1	Effect of a acetylene flow rate on 3 μg/mL Cr	53
	absorbance	
Figure 2	Effect of burner height on the absorbance of 3 μg/mL	55
	Cr	
Figure 3	Calibration curve of chromium using fuel rich air	58
	acetylene	
Figure 4	Effect of mineral acids concentrations on 3 μg/mL Cr	62
	absorbance	
Figure 5	Absorption spectra of colored chromium complex	65
	using TB reagent	
Figure 6	Absorption spectra of colored chromium complex	66
	using and DMY reagent	
Figure 7	Effect of pH on the absorbance of chromium (VI)	67
	using TB and DMY reagents	
Figure 8	Effect of volume of buffer on the absorbance of	68
	chromium (VI) using TB and DMY reagents	
Figure 9	Effect of reagent concentration on the absorbance of	69
	chromium (VI) using TB and DMY reagents	
Figure 10	Effect of sequence of addition on the absorbance of	70
	chromium (VI) using TB and DMY reagents	
Figure 11	Effect of time on the absorbance of chromium (VI)	72
	using TB and DMY reagents	
Figure 12	Effect of temperature on the absorbance of chromium	73
	(VI) using TB and DMY reagents	

Figure 13	Continuous variation for TB and DMY reagents with	77
	chromium (VI) under consideration	
Figure 14	Mole ratio for TB and DMY reagents with chromium	77
	(VI) under consideration	
Figure 15	Calibration curve using thymol blue reagent	78
Figure 16	Calibration curve using dimethyl yellow reagent	78

Aim of the present work

This work aims to calibrate and optimize a procedure that can be used for the determination of chromium in rocks, minerals and some environmental samples using flame atomic absorption spectroscopy and spectrophotometric techniques. Quantitative analysis by atomic absorption method is aim this an important in study. Spectrophotometrically, two reagents namely dimethyl yellow and thymol blue are investigated for direct determination of chromium (VI). In this respect, pH, volume of buffer, reagent concentration, sequence of addition, time and temperature are optimized.

Optimizing of the working conditions and studying of the effect of diverse ions, these probably exist in digested sample solution.