Results

The results of the present study are summarized in the following tables (from 8 to 14) and figures (from 17 to 23).

N.B:

Group I: Neonates with total bilirubin level of 15- 20 mg/dl.

Group II: Neonates with total bilirubin level of >20- 25 mg/ dl.

Group III: Neonates with total bilirubin level of > 25 mg / dl.

______Results

Table (I): Distribution of Variables of Family History & Sex and Weight among the Studied Groups of Neonatal Jaundice.

		S	tudied	l group	S		T	4-1		p-
Criteria	Gro	up I	Gro	up II	Grou	p III	Total		χ^2	-
	No.	%	No.	%	No.	%	No.	%		value
Family history of jaundice: +ve -ve	4 17	19.0 81.0	3 16	15.8 84.2	6 14	30.0 70.0	13 47	21.7 78.3	1.3	> 0.05
Total	21	100	19	100	20	100	60	100		
Sex: Male Female	9 12	42.9 57.1	10 9	52.6 47.4	13 7	65.0 35.0	32 28	53.3 46.7	2.0	> 0.05
Total	21	100	19	100	20	100	60	100		

Christ and a	S	tudied group)S	Anova (F)	1
Criteria	Group I	Group II	Group III	test	p- value
Weight of					
neonates in	2.91 ± 0.41	3.04 ± 0.32	3.07 ± 0.38	1.1	> 0.05
Kg ($ar{ ilde{X}}\pm$ SD)					

Both previous tables shows there are no statistically significant difference among studied groups as regards family history of previous sibling have jaundice & sex & weight

_____Results

Table (II): Distribution of Different Causes of Jaundice among the Studied Groups of Neonatal Jaundice.

		St	udied	group	S		Т	4-1		
Criteria	Gro	oup I	Gro	II qı	Grou	p III	Total		χ^2	p- value
	No.	%	No.	%	No.	%	No.	%	20	value
Causes of										
jaundice :						<u> </u>				
ABO	2	9.5	4	21.1	13	65.0	19	31.7	22.0	<
RH	2	9.5	2	10.5	5	25.0	9	15.0	23.8	0.0001
Others	17	81.0	13	68.4	2	10.0	32	53.3		
Total	21	100	19	100	20	100	60	100		

Figure (I): Different Causes of Jaundice among Studied Groups

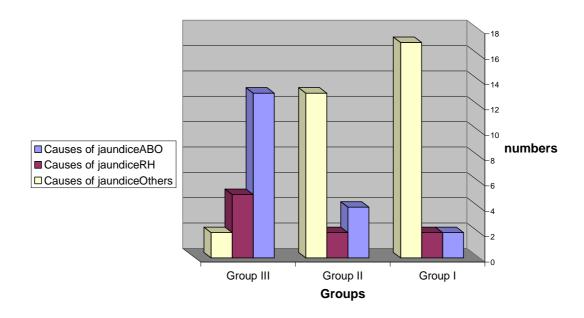


Table (II) and figure (I) show, a statistically significant difference among studied group as regard cause of jaundice. In **group I** (21, infants), 17 infant (81%) are due to causes other than ABO or Rh incompatibility. In **group II** (19 cases) 13 infant (68.4%) are due to causes other the ABO or Rh incompatibility. While in the last **group III** (20 cases) 13 infant (65%) due to ABO incompatibility and 90% due to ABO plus RH incompatibility.

Table (III): Relationship between Total Serum Bilirubin Level and Neurological Score.

	No	eurolog	ical so	core	T	- 4 - 1			
Criteria	Normal		A bnormal		Total		χ^2	p- value	
	No.	%	No.	%	No.	%		value	
Groups of S.						! !			
<u>bilirubin level</u> :									
Group I	21	42.0	0	0.0	21	35.0	17.5	0.0001	
Group II	18	36.0	1	10.0	19	31.7		0.0001	
Group III	11	22.0	9	90.0	20	33.3			
Total	50	100.0	10	100.0	60	100.0			

Figure (II): Neurological Score Results among Studied Groups.

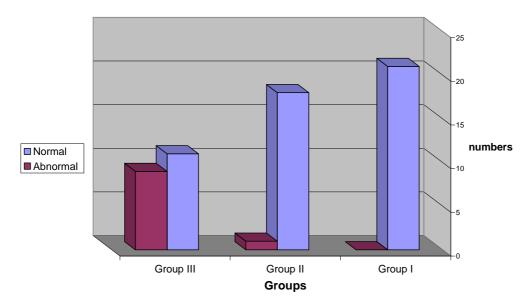


Table (III) and figure (II) show highly statistical difference among studied groups as regard neurological score. In group I there was no cases with abnormal neurological dysfunction, in group II reported one case of neurological dysfunction and in group III reported nine cases of neurological dysfunction. Which present 90% of abnormal cases.

Results

Table (IV): Relationship between Mean of Neurological Score and Studied Groups

Critaria	St	tudied grou	ps	Anova	p-
Criteria	Group I	Group II	Group III	(F) test	value
Neurological score (X±SD)	153.3± 2.2	150.6± 4.4	142.2± 8.8	20.4	< 0.0001

(**N.B**) LSD (least significant difference) of the previous table showed that the significant difference is due to the difference in mean of neurological score between group III and both of group II & group I.

Table (V): Relationship between Different Causes of Jaundice and Neurological Score.

	N	eurolog	ical sc	eore	Т	-4-1			
Criteria	Normal		Abn	Abnormal		Total		p- value	
	No.	%	No.	%	No.	%	χ^2	value	
Causes of						1			
<u>jaundice</u> :		! ! !				! !			
ABO	14	28.0	5	50.0	19	31.7	10.5	< 0.005	
RH	5	10.0	4	40.0	9	15.0			
Others	31	62.0	1	10.0	32	53.3			
Total	50	100.0	10	100.0	60	100.0			

Figure (III): Correlation of Causes of Jaundice with Normal and Abnormal Results of Neurological Score.

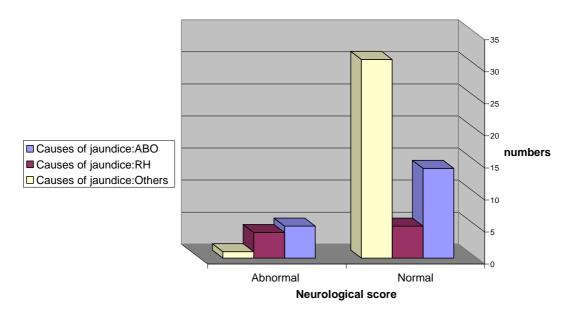
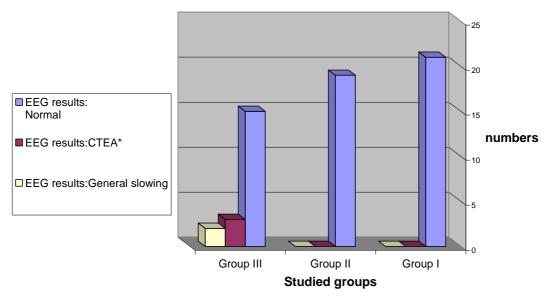



Table (V) and figure (III) show a statistical significant difference among cases as regard neurological score and cause of jaundice. the ABO and RH incompatibles show the major number of abnormal neurological score.

Table (VI): Distribution of Different Results of EEG among the Studied Groups of Neonatal Jaundice.

		S	tudie	d group	S		Т	-4-1		
Criteria	Gro	up I	Gro	up II	Grou	ıp III	Total No. %		χ^2	p- value
	No.	%	No.	%	No.	%			20	value
EEG		1				:		:		
<u>results</u> :		; ! !		: - -				; ! !		
Normal	21	100.0	19	100.0	15	75.0	55	91.7	10.9	<
CTEA*	0	0.0	0	0.0	3	15.0	3	5.0	10.5	0.05
General	0	0.0	0	0.0	2	10.0	2	3.3		
slowing		 - -		! ! !						
Total	21	100.0	19	100.0	20	100.0	60	100.0		

Figure (IV): EEG Results among Studied Groups

* CTEA= Centotemporal Epileptiform Activity.

Table (VI) and figure (IV) show a statistically significant difference among studied groups as regard EEG results where as the group III is the only group reported abnormal EEG results.

____Results

Table (VII): Distribution of Different Results of Auditory Brainstem Response (ABR) among the Studied Groups of Neonatal Jaundice.

		\$	d group	Total			p-			
Criteria	Group I		Gro	<i>G</i> roup II		<i>G</i> roup III		10tai		
Criteria	No	%	No.	%	No.	%	No.	%	χ^2	value
ABR results: Normal Auditory dys-	21	100.0	19	100.0	17	85.0	57	95.0	6.32	< 0.05
synchrony	0	0.0	0	0.0	3	15.0	3	5.0		
Total	21	100.0	19	100.0	20	100.0	60	100		

Figure (V): ABR Results among Studied Groups

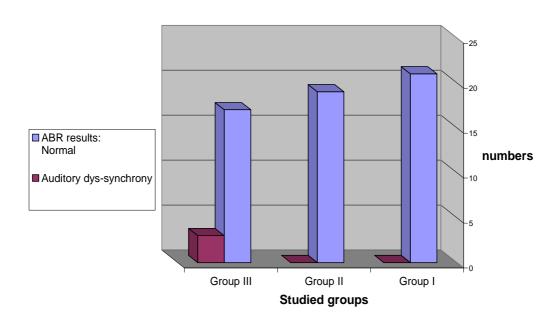


Table (VII) and figure (V) show a statistical significant difference among studied groups as regard ABR results where as the group III is the only group show abnormal auditory brain response test (ABR) in form of auditory dys-synchrony.

_____Results

Table (VIII): Relationship between Results of Auditory Brainstem Response (ABR) and Neurological Score.

	N	eurolog	ical so	core	Т.	- 4 - 1		
Criteria	Normal		Abnormal		10	otal	Fischer's exact test	
	No.	%	No.	%	No.	%	exact test	
ABR results:		-		-		-		
Normal	50	100.0	7	70.0	57	95.0	n volvo	
Auditory				i !		i !	p- value < 0.005	
dyssynchrony	0	0.0	3	30.0	3	5.0	0.003	
Total	50	100.0	10	100.0	60	100.0		

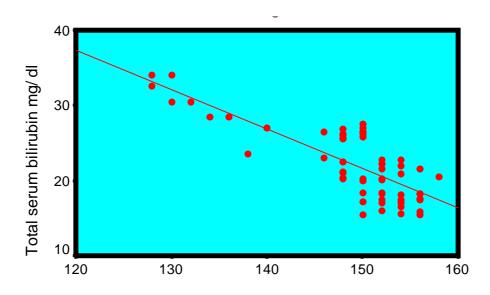

This table shows a statistically significant difference auditory brainstem response test results and neurological score

Table (IX): Correlation between Serum Total Bilirubin Level and Neurological Score of Infants with Neonatal Jaundice.

Parameters of correlation	(X±SD)	Pearson's correlation coefficient (r)	p- value	
Total serum bilirubin	22.2± 4.9			
(mg/ dl)	148.8 ± 7.4	- 0.8	< 0.001	
Neurological score				

This table shows a high statistically correlation between mean of total serum bilirubin and neurological score. The increase of total serum bilirubin results in decrease in neurological score.

Figure (VI): Correlation between total serum bilirubin level and neurological score.

Quantitative assessment of neurological score

N.B: The previous figure shows that there is strong significant negative correlation between serum total bilirubin level and neurological score of infants with neonatal jaundice.