

STATISTICAL ANALYSIS

Statistical evaluation of different biochemical parameters in relation to clinical data will be studied below using unpaired student t test of significance as well as spearman's correlation coefficients between different variables.

Table 13: Prevalence of Islet Cell autoantibodioes (ICA) in Type I and Type II Diabetes Mellitus and Control Groups

	ICA N	egative	ICA P	ositive	X2	P value
	n.	%	n.	%		
NIDDM	17	81.0	4	19.0	16.01	<0.01
(oral) $n = 21$	İ					
NIDDM	13	54.2	11	45.8	16.01	<0.01
(insulin) n.=24						
IDDM	10	40	15	60	16.01	<0.01
n.=25						
Control	16	100	0	0	16.01	<0.01
n.=16						

ICA is considered positive if OD> 1.25

Table 14: Prevalence of Glutamic Acid Decarboxylase autoantibodies (GAD) in Type I and Type II Diabetes Mellitus and Control Groups

	GAD 1	legative	GAD	Positive	X2	P value
	n.	%	n.	%		
NIDDM	13	61.9	8	38.1	31.06	<0.001
(oral) n.=21						
NIDDM	8	33.3	16	66.7	31.06	<0.001
(insulin) n.=24						
IDDM	7	28.0	18	72.0	31.06	<0.001
n.=25						
Control	16	100	0	0	31.06	< 0.001
n.=16						

GAD is considered positive if OD> 1.05

Table 15: Serum C-peptide, Vascular Cell Adhesion Molecule-1 (sVCAM-1), soluble E-Selectin (sE-Selectin), glycosylated hemoglobin (HbA1c), fasting and postprandial blood glucose levels in NIDDM on oral treatment (gliclazide=diamicron)

	NIDDN	(oral)	Control		t	P value
	n.=	21	n.=	:16	(df= 35)	
	Mean	SD	Mean	SD	` ′	
C-peptide (ng/ml)	0.785	0.34	2.32	0.56	10.3	<0.01
sVCAM-1 (ng/ml)	1.69	1.0	0.59	0.17	4.3	<0.01
sE-Selectin (ng/ml)	52.5	27.8	30.8	6.46	3.0	<0.01
HbA1c (%)	9.09	2.5	4.55	0.63	7.0	<0.01
FBS (mg/dl)	183	63.0	141.5	25.6	5.5	<0.01
PPBS (mg/dl)	288.0	87.2	141.5	25.6	6.4	<0.01

Table 16: Serum C-peptide, soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1), soluble E-Selectin (sE-Selectin), glycosylated hemoglobin (HbA1c), fasting and postprandial blood glucose (FBG, PPBG) levels in NIDDM on insulin therapy

	NID		Control		t	P value
	(insulin	n.=24	n.=	16	(df= 38)	
	Mean	SD	Mean	SD	` /	
C-peptide (ng/ml)	0.612	0.28	2.32	0.56	12.7	<0.01
sVCAM-1 (ng/ml)	1.50	1.0	0.59	0.17	3.3	<0.01
sE-Selectin (ng/ml)	59.0	29.3	30.8	6.46	3.7	<0.01
HbAlc (%)	9.03	2.8	4.55	0.63	6.0	<0.01
FBS (mg/dl)	205.2	81.4	93.4	11.7	5.4	<0.01
PPBS (mg/dl)	304.1	92.5	141.5	25.6	6.8	<0.01

Table 17: Serum C-peptide, soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1), soluble E-Selectin (sE-Selectin), glycosylated hemoglobin (HbA1c), fasting and postprandial blood glucose (FBG, PPBG) levels in IDDM

	IDDM	n.=25	Control	n.=16	t	P value
	Mean	SD	Mean	SD	(df= 39)	
C-peptide	0.52	0.33	2.32	0.56	12.9	<0.01
(ng/ml)						
sVCAM-1	1.55	1.0	0.59	0.17	3.7	<0.01
(ng/ml)						
sE-Selectin	55.9	27.4	30.8	6.46	3.5	< 0.01
(ng/ml)						
HbA1c (%)	7.88	1.9	4.55	0.63	6.5	<0.01
FBS (mg/dl)	163.0	54.0	93.4	11.7	4.9	< 0.01
PPBS (mg/dl)	266.2	88.4	141.5	25.6	5.7	<0.01

Table 18: Correlation coefficient between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and C-peptide levels in NIDDM (oral and insulin therapy) and IDDM groups

		ICA			GAD	
	(r	,	p)	(r	,	p)
NIDDM (oral)	0.233		>0.05	- 0.123		>0.05
NIDDM (insulin)	- 0.779		< 0.01	- 0.720		<0.01
IDDM	- 0.371		>0.05	- 0.561		<0.01

Table 19: Correlation coefficient between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) levels in NIDDM (oral and insulin therapy) and IDDM groups

		ICA			GAD	
	(r	,	p)	(r	,	<u>p)</u>
NIDDM (oral)	0.000		>0.05	0.008		> 0.05
NIDDM (insulin)	0.732		< 0.01	0.614		< 0.01
IDDM	0.540		< 0.05	0.433		< 0.05

Table 20: Correlation coefficient between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and soluble E-Selectin (sE-Selectin) levels in NIDDM (oral and insulin therapy) and IDDM groups

	ICA			GAD		
	(r	,	p)	(r	,	p)_
NIDDM (oral)	- 0.261		>0.05	- 0.033		>0.05
NIDDM (insulin)	0.304		>0.05	0.238		>0.05
IDDM	- 0.034		>0.05	- 0.037		>0.05

Table 21: Correlation coefficient between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and glycosylated hemoglobin (HbA1c) levels in NIDDM (oral and insulin therapy) and IDDM groups

		ICA			GAD	
	(r	,	p)	(r	,	p)
NIDDM (oral)	- 0.080		>0.05	- 0.016		>0.05
NIDDM (insulin)	- 0.133		>0.05	0.026		>0.05
IDDM	0.266		>0.05	- 0.204		>0.05

Table 22: Correlation coefficient between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and fasting blood glucose levels (FBG) in NIDDM (oral and insulin therapy) and IDDM groups

•		ICA			GAD		
	(r	,	p)	(r	,	g)	
NIDDM (oral)	0.160		>0.05	0.375		>0.05	
NIDDM (insulin)	- 0.272		>0.05	- 0.141		>0.05	
IDDM	0.332		>0.05	- 0.087	· · · · · · · · · · · · · · · · · · ·	>0.05	

Table 23: Correlation coefficient between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and postprandial blood glucose levels (PPBG) in NIDDM (oral and insulin therapy) and IDDM groups

		ICA			GAD	
	(r	,	p)	(r	,	p)
NIDDM (oral)	0.120		>0.05	0.332		>0.05
NIDDM (insulin)	- 0.290		>0.05	- 0.224		>0.05
IDDM	0.375		>0.05	- 0.229		>0.05

Table 24: Correlation coefficient between Islet Cell autoantibodies (ICA) and Glutamic Acid Decarboxylase autoantibodies (GAD) levels in NIDDM (oral and insulin therapy) and IDDM groups

	R	P value
NIDDM (oral)	0.618	< 0.01
NIDDM (insulin)	0.650	< 0.01
IDDM	0.400	< 0.05

Table 25: Correlation coefficient between C-peptide and soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) levels in NIDDM (oral and insulin therapy), IDDM and control groups

		VCAM-1	
	(r	,	P)
NIDDM (oral)	-0.743		0.000
NIDDM (insulin)	- 0.842		0.000
IDDM	- 0.756		0.000
Control	0.089		0.744

Table 26: Correlation coefficient between C-peptide and soluble E-Selectin (sE-Selectin) levels in NIDDM (oral and insulin therapy), IDDM and control groups

	sE-selectin		
	(r	, P)	
NIDDM (oral)	-0.097	0.676	
NIDDM (insulin)	- 0.218	0.305	
IDDM	- 0.234	0.260	
Control	0.486	0.056	

Table 27: Correlation coefficient between C-peptide and glycosylated hemoglobin (HbA1c) levels in NIDDM (oral and insulin therapy), IDDM and control groups

	HbA1c		
	(r	,	P)
NIDDM (oral)	0.296		0.193
NIDDM (insulin)	- 0.031		0.887
IDDM	- 0.017		0.935
Control	0.016		0.954

Table 28: Correlation coefficient between C-peptide and fasting blood glucose (FBG) levels in NIDDM (oral and insulin therapy), IDDM and control groups

		FBG	
	(r	,	P)
NIDDM (oral)	-0.731		0.097
NIDDM (insulin)	0.173		0.418
IDDM	- 0.192		0.357
Control	- 0.058		0.830

Table 31: Correlation coefficient between soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) and glycosylated hemoglobin (HbA1c) levels in NIDDM (oral and insulin therapy), IDDM and control groups

		HbAlc	
	(r	,	P)
NIDDM (oral)	0.454		0.039
NIDDM (insulin)	0.047		0.827
IDDM	0.072		0.731
Control	0.173		0.522

Table 32: Correlation coefficient between soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) and fasting blood glucose (FBG) levels in NIDDM (oral and insulin therapy), IDDM and control groups

	1	FBG
	(r	, P)
NIDDM (oral)	- 0.384	0.086
NIDDM (insulin)	- 0.137	0.523
IDDM	0.274	0.185
Control	- 0.480	0.060

Table 33: Correlation coefficient between soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) and postprandial blood glucose (PPBG) levels in NIDDM (oral and insulin therapy), IDDM control groups

		PPBG
	(r	, P)
NIDDM (oral)	0.488	0.025
NIDDM (insulin)	- 0.126	0.559
IDDM	0.172	0.410
Control	- 0.173	0.522

Table 34: Correlation coefficient between soluble E-Selectin (sE-Selectin) and glycosylated hemoglobin (HbA1c) levels in NIDDM (oral and insulin therapy), IDDM and control groups

	Hbz	Alc
	(r ,	P)
NIDDM (oral)	- 0.219	0.340
NIDDM (insulin)	- 0.108	0.616
IDDM	- 0.190	0.364
Control	- 0.433	0.094

lower than that of control group. Serum soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) level in NIDDM group on insulin therapy was significantly higher than that of control group. Serum soluble E-Selectin (sE-Selectin) level in NIDDM group on insulin therapy was significantly higher than that of control group. Glycosylated hemoglobin (HbA1c) level in NIDDM group on insulin therapy was significantly higher than that of control group. Fasting blood glucose (FBG) level in NIDDM group on insulin therapy was significantly higher than that of control group. Postprandial blood glucose (PPBG) level in NIDDM group on insulin therapy was significantly higher than that of control group.

Table 17 shows serum C-peptide, soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1), soluble E-Selectin (sE-Selectin), glycosylated hemoglobin (HbA1c), fasting and postprandial blood glucose (FBG, PPBG) levels in IDDM. Serum C-peptide level in IDDM group was significantly lower than that of control group. Serum soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) level in IDDM group was significantly higher than that of control group. Serum soluble E-Selectin (sE-Selectin) level in IDDM group was significantly higher than that of control group. Glycosylated hemoglobin (HbA1c) level in IDDM group was significantly higher than that of control group. Fasting blood glucose (FBS) level in IDDM group was significantly higher than that of control group. Postprandial blood glucose (PPBS) level in IDDM group was significantly higher than that of control group.

Table 18 shows correlation coefficient between [Islet Cell autoantibodies(ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD)] and C-peptide levels in

NIDDM (oral and insulin therapy) and IDDM groups. There was no correlation between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and C-peptide levels in NIDDM (on oral therapy) group. There was a significant negative correlation between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and C-peptide levels in NIDDM (on insulin therapy) group. There was also a significant negative correlation between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and C-peptide levels in IDDM group.

Table 19 shows correlation coefficient between [Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD)] and soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) levels in NIDDM (oral and insulin therapy) and IDDM group. There was no correlation between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) levels in NIDDM (on oral therapy) group. There was a significant positive correlation between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) in NIDDM (on insulin therapy) group. There was a significant positive correlation between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) in IDDM group.

Table 20 shows correlation coefficient between [Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD)] and soluble E-Selectin (sE-Selectin) levels in NIDDM (oral and insulin therapy) and IDDM groups. There was no correlation between Islet Cell autoantibodies (ICA) or Glutamic Acid

Decarboxylase autoantibodies (GAD) and soluble E-Selectin (sE-Selectin) levels in NIDDM (on oral therapy) group. There was no correlation between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and soluble E-Selectin (sE-Selectin) levels in NIDDM (on insulin therapy) group. There was no correlation between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and soluble E-Selectin (sE-Selectin) levels in IDDM group.

Table 21 shows correlation coefficient between [Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD)] and glycosylated hemoglobin (HbA1c) levels in NIDDM (oral and insulin therapy) and IDDM groups. There was no correlation between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and glycosylated hemoglobin (HbA1c) levels in NIDDM (on oral therapy) group. There was no correlation between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and glycosylated hemoglobin (HbA1c) levels in NIDDM (on insulin therapy) group. There was no correlation between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and glycosylated hemoglobin (HbA1c) levels in IDDM group.

Table 22 shows correlation coefficient between [Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD)] and fasting blood glucose (FBG) levels in NIDDM (oral and insulin therapy) and IDDM groups. There was no correlation between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and fasting blood glucose (FBG) levels in NIDDM (on oral therapy) group. There was no correlation between Islet Cell

autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and fasting blood glucose levels (FBG) in NIDDM (on insulin therapy) group. There was no correlation between 1slet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and fasting blood glucose (FBG) levels in IDDM group.

Table 23 shows correlation coefficient between [Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD)] and postprandial blood glucose (PPBG) levels in NIDDM (oral and insulin therapy) and IDDM groups. There was no correlation between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and postprandial blood glucose (PPBG) levels in NIDDM (on oral therapy) group. There was no correlation between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and postprandial blood glucose levels (PPBG) in NIDDM (on insulin therapy) group. There was no correlation between Islet Cell autoantibodies (ICA) or Glutamic Acid Decarboxylase autoantibodies (GAD) and postprandial blood glucose (PPBG) levels in IDDM group.

Table 24 shows correlation coefficient between Islet Cell autoantibodies (ICA) and Glutamic Acid Decarboxylase autoantibodies (GAD) levels in NIDDM (oral and insulin therapy) and IDDM groups. There was a significant positive correlation between Islet Cell autoantibodies (ICA) and Glutamic Acid Decarboxylase autoantibodies (GAD) levels in NIDDM (on oral therapy) group. There was a significant positive correlation between Islet Cell autoantibodies (ICA) and Glutamic Acid Decarboxylase autoantibodies (GAD) in NIDDM (on insulin therapy) group. There was a significant positive correlation between Islet Cell autoantibodies (ICA)

and Glutamic Acid Decarboxylase autoantibodies (GAD) levels in IDDM group.

Table 25 shows negative correlation between C-peptide and soluble Vascular Cell

Adhesion Molecule-1 (sVCAM-1) levels in NIDDM (oral and insulin therapy) and

IDDM groups.

Table 26 shows no correlation between C-peptide and soluble E-Selectin (sE-Selectin) levels in NIDDM (oral and insulin therapy) and IDDM groups.

Table 27 shows no correlation between C-peptide and glycosylated hemoglobin

(HbA1c) levels in NIDDM (oral and insulin therapy) and IDDM groups.

Table 28 shows no correlation between C-peptide and fasting blood glucose (FBG) levels in NIDDM (oral and insulin therapy) and IDDM groups.

Table 29 shows no correlation between C-peptide and postprandial blood glucose (PPBG) levels in NIDDM (oral and insulin therapy) and IDDM groups.

Table 30 shows no correlation between soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) and soluble E-Selectin (sE-Selectin) levels in NIDDM (oral and insulin therapy) and IDDM groups.

Table 31 shows no correlation between soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) and glycosylated hemoglobin (HbA1c) levels in NIDDM (oral and insulin therapy) and IDDM groups.

Table 32 shows no correlation between soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) and fasting blood glucose (FBG) levels in NIDDM (oral and insulin therapy) and IDDM groups.

Table 33 shows no correlation between soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) and postprandial blood glucose (PPBG) levels in NIDDM (oral and insulin therapy) and IDDM groups.

insulin therapy) and IDDM groups.

Table 34 shows no correlation between soluble E-Selectin (sE-Selectin) and glycosylated hemoglobin (HbA1c) levels in NIDDM (oral and insulin therapy) and IDDM groups.

Table 35 shows no correlation between soluble E-Selectin (sE-Selectin) and fasting blood glucose (FBG) levels in NIDDM (oral and insulin therapy) and IDDM groups. Table 36 shows no correlation between soluble E-Selectin (sE-Selectin) and postprandial blood glucose (PPBG) levels in NIDDM (oral and insulin therapy) and IDDM groups.

Table	37:	Indi	vidne	ıl La	boratory	Data

7 1 -		UCAMA		FBS .	Post-Prandial	E-selectin
Sample	C-Peptide	VCAM-1	HbAIC	155	270	44
	1.0	3000	9.2			62
2	1.1	700	10.8	215	410 270	
3	0.9	1800	13.4	120		40
4	0.8	2400	8.7	260	420	44
5	0.3	3100	4.4	145	200	148
6	0.4	2800	5,2	120	175	
7 8	1.2	650	10.3	280	415 170	39
9	1.0	850 480	8.1 4.5	105	210	29
	0.9	720		240	335	30
10	0.9	2400	6.4	130	190	42
12	0.3	3000	7.3	185	260	29
13	1.0	680			375	
			11.6	295	 	40
14	0.7	1580	7.6	115	200	62
15	0.3	2800	9.1	175	265	52
16	0.9	710	10.3	160	320	30
17	1.0	1150	9.7	290	400	74
18	1.2	580	10.8	210	340	94
19	0.8	1250	11.6	200	· 305	32
20	0.4	3200	5.8	120	170	74
21.	1.0	1800	10.3	220	345	40
22	0.5	1150	13.3	300	395	125
23	0.9	600	9.2	390	450	29
24	0.8	1050	13.1	170	340	29
25	0.3	2800	8.0	280	300	30
26	0.4	3000	5.7	105	130	114
27	0.5	3200	13.9	290	420	62
28	0.8	900	5.1	145	200	114
29	0.8	520	11,3	390	460	74
30	1.0	340	6.6	140	200	94
31	0.2	. 1800	5.2	120	170	94
32	0.3	3000	9.7	160	300	44
33	0.5	2600	5.3	125	215	42
34	0.9	320	10.2	220	340	44
35	0.4	1100	12.7	260	390	42
<u>36·</u>	0.6	1300	13.6	240	390	74
37	0.8	350	8.1	230	310	30
38	1.0	380	7.8	200	340	30
39	0.3	3000	11.9	240	325	44
40	0.2	1800	99	150	245	62
41	0.6	2200	6.0	140	270	44
42	0.7	710	9.2	170	290	42
43	0.9	440	6.3	120	190	56
44	1.0	400	8.2	210	380	42
45	0.2	3100	7.0	130	220	56

Table 38: Individual Laboratory Data

Sample	C-peptide	VCAM-1	HbA1C	FBS	E-Selectin	Post-prandia
46	0.9	410	7.3	120	30	160
47	0.6	2100	11.5	320	29	460
48	0.2	1600	9.9	260	62	340
49	0.2	800	5.3	120	105	160
50	1.0	610	5.2	110	65	155
51	0.8	580	11.1	190	42	340
52	0.4	1800	6.6	120	56	190
53	0.4	2000	7.0	130	42	240
54	0.3	1650	8.3	160	44	275
55	0.2	3100	5.2	110	30	
56	0.1	3000	6.7	120	74	160
57	0.9	410	5.4	110	62	185
58	0.9	330	10.8	180	94	190
59	1.2	510	9.0	155		340
60	0.2	3100	9.6	240	16	310
61	0.3	2800	6.8	135	74	380
62	0.4	1700	8.7	210	62	230
63	0.1	2700	9.0	165	30	290
64	0.3	1900	10.7	230	44	270
65	0.5	1200	6.9	130	114	385
66	0.2	3100	8.6	200	114	270
67	0.6	2100	7.3	165	30	375
68	0.9	430	8.0	155	30	300
69	1.0	380	6.6		44	310
70	0.4	500	5.7	125	44	230
71	1.5	310	4.2	115	62	160
72	2.2	450	3.7	110	29	170
73	1.9	780	5.6	90	25	140
74	3.0	540	5.4	105	15	160
75	2.5	490	4.2	85 90	28	155
76	2.3	810	4.3		30	120
77	1.9	700	5.2	95	32	130
78	2.5	580	4.9	80	29	105
79	3.2	480		95	30	110
80	1.5	820	4.0	110	34	190
81	3.4	900	3.8	75	40	115
82	2.8	610	4.5	80	42	140
83	2.2	490	5.1	105	40	160
84	1.8	330	4.7	95	50	120
85	2.0	750	5.2	110	26	180
86	2.4		4.6	90	30	145
	4.7	480	3.7	80	32	125

Table 39: Individual Laboratory Data

Sample	ICA autoantibodies	GAD autoantibodies
n.	O.D.>1.25 (+ve)	OD. >1.05 (+ve)
1	(+)	(-)
2	(-)	(+)
3	(-)	(-)
4	(-)	(+)
5	(-)	(-)
6	(-)	(-)
7	(+)	(+)
8	(-)	(-)
9	(-)	(-)
10	(-)	(-)
11	(-)	(-)
12	(+)	(+)
13	(-)	(+)
14	(-)	(-)
15	(+)	(+)
16	(+)	(+)
17	(-)	(-)
18	(-)	(-)
19	(-)	(-)
20	(-)	(+)
21	(-)	(-)
22	(+)	(+)
23	(-)	(-)
24	(-)	(-)
25	(+)	(+)
26	(+)	(+)
27	(-)	(+)
28	(-)	(-)
29	(-)	(-)
30	(-)	(+)
31	(+)	(+)
32	(+)	(+)
33	(+)	(+)
34	(-)	(-)
35	(-)	(+)
36	(+)	(+)
37	<u>(-)</u>	(+)
38	(-)	(-)
39	(+)	(+)
40	(+)	(+)
41	(+)	(+)
42	(-)	. (+)
43	(-)	(-)
44	(-)	(-)
45	(+)	(+)
46	(-)	(+)
47		(+)
4/	(+)	(*)

Sample n.	ICA autoantibodies O.D.>1.25 (+ve)	GAD autoantibodies OD. >1.05 (+ve)
48	(+)	(+)
49	(+)	(+)
50	(-)	(-)
51	(-)	(-)
52	(-)	(+)
53	(+)	(+)
54	(+)	(+)
55	(+)	(+)
56	(-)	(+)
57	(-)	(+)
58	(+)	(-)
59	(-)	(-)
60	(-)	(-)
61	(+)	(+)
62	(+)	(+)
63	(+)	(+)
64	(+)	(+)
65	(+)	(+)
66	(+)	(+)
67	(+)	(+)
68	(+)	(-)
69	(-)	(-)
70	(-)	(+)
71	(-)	(-)
72	(-)	(-)
73	(-)	(-)
74	(-)	(-)
75	(-)	(-)
76	(-)	(-)
77	(-)	(-)
78	(-)	(-)
79	(-)	(-)
80	(-)	(-)
81	(-)	(-)
82	(-)	(-)
83	(-)	(-)
84	(-)	(-)
85	(-)	(-)
86	(-)	(-)

.