

RESULTS

Total number of 243 oocytes were collected from 20 infertile patients who underwent 28 cycles of ICSI treatment. 13 patients (65%) underwent one cycle, 6 patients (30%) underwent 2 cycles and one (5%) patients underwent 3 cycles.

Table (1) shows patient's characteristics.

Table (1): Studied women characteristics (n=20)

Data	Variable
Patients age range (mean ± SD).	24 -40 (32.3 ± 1.2)
Duration of infertility.	3-5 (3.2 ± 1.1)
Patients with 1ry infertility No (%).	6 (30%)
Patients with 2ry infertility No (%).	14 (70%)
Amenorrhea or oligomenorrhea No (%).	3 (15%)
Hirsutism No (%)	2 (10%)
• FSH lu/L range (mean ± SD).	6-8 (6.7 ± 0.5)
• LH (day 3) lu/L, range (mean ± SD).	7-10 (8.3 ± 0.9)
• Total testetesterone ng/L (mean <u>+</u> SD).	1.7 <u>+</u> 1.2
Prolactin ng/ml range (mean ± SD).	8-13 (9.1 ± 1.9)

Table (2) shows the causes of infertility among studied women. Tubal factor was present in 8 (40%) patients. Male factor was present in 5 patients (25%) and polycystic ovary was present in 7 patients (35%).

Table (2): Causes of infertility among studied group (n = 20)

Cause	No	(%)
Male factor oligospermia.	5	25.0
Tubal factor.	8	40.0
Polycystic ovary (PCO).	7	35.0
Total	20	100.0

Table (3) shows cycle outcome data. The mean number of oocyte aspirated per cycle was 8.7.

Table (3): Cycle outcome data among studied group

Data	Variable
Total number of cycles.	28
Number of retrieved oocytes.	243
No of oocytes/cycle (mean ± SD).	(8.7 ± 2.2)
Dose of FSH (mean ± SD) (IU)	2557 ± 1046
 LH on day of hCG administration (mean ± SD) 	17- 20 (18.5 ± 1.3)
Oestradiol on day of hCG administration (mean ± SD)	121.25 ± 19.5
• Cestiauloi on day of no o damme and (

Table (4) shows the assessment of 243 oocytes maturity among the studied group immediately after retrieval, 53 (21.8) oocytes were excluded from the study due to immaturity only, 190 (78.2%) oocytes were included.

Table (4): Oocyte maturity

Stage	Number	%	
Germinal vesicle (Gv).	22	9.1	
Metaphase I	31	12.7	
Metaphase II	190	78.2	
Total	243	100.0	

Table (5) shows cytoplasmic morphology among metaphase II oocytes. The types of cytoplasmic morphological anomalies were dark incorporations, dark cytoplasm (inclusive granularity) and refractile bodies.

Table (5): Cytoplasmic morphology grades among Mll oocytes

55.3 28.4
20.4
20.4
16.3
100.0

Table (6) shows first polar body morphology grades. Round or ovoid with smooth surface (grade 1), round or ovoid with rough surface (grade 2), fragmented (grade 3), or large perivitelline space (grade 4).

Table (6): First polar body morphology grades among metaphase il oocytes

Grades	No.	%
Grade 1	58	(30.5
Grade 2	64	33.7
Grade 3	53	27.8
Grade 4	15	8
Total	190	100.0

Table (7) shows correlation between cytoplasm with morphological anomalies (n = 85) and first polar body grades. Insignificant relationship was found.

Table (7): Correlation between the cytoplasmic morphological anomalies and first polar body morphology grades among metaphase II oocytes

1 st PB	≥ 1 an	omaly	Nor	mal	To	tal	χ2	P
grade	No.	%	No.	%	No.	%	~	
Grade 1	26	44.8	32	55.2	58	100.0		
Grade 2	28	43.8	36	56.2	64	100.0	:	
Grade 3	24	45.2	29	54.8	53	100.0	0.05	NS
Grade 4	7	46.7	8	53.3	15	100.0		
Total	85	44.7	105	55.3	190	100.0	· 	

Table (8) shows the relationship between cytoplasmic morphology and fertilization rate in metaphase II oocytes. There was non significant relationship between cytoplasmic morphology and fertilization rate.

Table (8): correlation between cytoplasmic morphology and fertilization rate in metaphase II oocytes (n = 190)

O to ula amia		ICSI res	sults		Total			
Cytoplasmic morphology	Degenerated		Ferti	lized	• •		χ2	Р
morphology	N	%	N	%	No.	%	· ·	
Grade 1	28	26.7	77	73.3	105	100.0		
Grade 2	15	27.8	39	72.2	54	100.0		Ne
Grade 3	9	29.1	22	70.9	31	100.0	0.7	NS
	52	27.4	138	72.6	190	100.0		

Table (9) shows the relationship between first polar body morphology and fertilization rate. There was significant difference in fertilization rate according to first polar body morphology grades (P < 0.05).

Table (9): Correlation between 1st polar body grades and fertilization rate in metaphase II oocytes (n = 190)

	ICSI results Total						
Degenerated		Fertilized				χ2	P
N	%	N	%	No.	%	,	
8	13.8	50	86.2	58	100.0		
12	18.8	52	81.2	64	100.0		
23	43.4	30	56.6	53	100.0	22.65	< 0.001
9	60.0	6	40.0	13	100.0		
52	27.4	138	72.6	190	100.0		
	N 8 12 23 9	Degenerated N % 8 13.8 12 18.8 23 43.4 9 60.0	N % N 8 13.8 50 12 18.8 52 23 43.4 30 9 60.0 6	Degenerated Fertilized N % N % 8 13.8 50 86.2 12 18.8 52 81.2 23 43.4 30 56.6 9 60.0 6 40.0	Degenerated Fertilized N % N % No. 8 13.8 50 86.2 58 12 18.8 52 81.2 64 23 43.4 30 56.6 53 9 60.0 6 40.0 13	Total Degenerated Fertilized N % No. % 8 13.8 50 86.2 58 100.0 12 18.8 52 81.2 64 100.0 23 43.4 30 56.6 53 100.0 9 60.0 6 40.0 13 100.0	Total N % N % No. % 8 13.8 50 86.2 58 100.0 12 18.8 52 81.2 64 100.0 23 43.4 30 56.6 53 100.0 22.65 9 60.0 6 40.0 13 100.0

Table (10) Shows the embryo quality according to cytoplasmic morphology among fertilized metaphase II oocytes (n = 138). There was non significant relationship between cytoplasmic morphology and embryo grades.

Table (10): Correlation between cytoplasmic morphology and embryo quality among fertilized metaphase II oocytes

	Embryoq	luality					
		> 25% Total fragmented		χ2	Р		
N	%	N	%	No.	%		
52	68.0	25	32.0	77	100.0		<u> </u>
26	66.7	13	33.3	39	100.0	0.42	NS
14	63.7	8	36.3	22	100.0	U.12	NO
92	66.7	46	33.3	138	100.0		
	< 2 fragm N 52 26 14	< 25% fragmented N % 52 68.0 26 66.7 14 63.7	fragmented fragm N % N 52 68.0 25 26 66.7 13 14 63.7 8	< 25% fragmented N % N % 52 68.0 25 32.0 26 66.7 13 33.3 14 63.7 8 36.3	< 25% > 25% To fragmented fragmented No. N % N % No. 52 68.0 25 32.0 77 26 66.7 13 33.3 39 14 63.7 8 36.3 22	< 25% Total fragmented N % N % No. % 52 68.0 25 32.0 77 100.0 26 66.7 13 33.3 39 100.0 14 63.7 8 36.3 22 100.0	< 25% Total fragmented N % N % No. % 52 68.0 25 32.0 77 100.0 26 66.7 13 33.3 39 100.0 14 63.7 8 36.3 22 100.0

Table (11) shows the embryo quality according to first polar body morphology among fertilized metaphase II oocytes (n=138). There was significant relationship between first polar body morphology and embryo quality (P < 0.001).

Table(11): Correlation between first polar body morphology grades and embryo quality among fertilized metaphase II oocytes

		Embryoq	uality							
Fertilized	< 2	5%	> 25%		% > 25°		Total		Adjusted	Р
oocytes	fragm	fragmented		fragmented			χ2			
	N	%	N	%	No.	%				
Grade 1	45	90.0	5	10.0	50	100.0				
Grade 2	32	61.5	20	38.5	52	100.0				
Grade 3	14	46.7	16	63.3	30	100.0	25.02	< 0.001		
Grade 4	1	16.7	5	83.3	6	100.0				
Total	92	66.7	46	33.3	138	100.0				
				<u> </u>	<u> </u>			<u> </u>		

Fig. (12): Grade I :first polar body

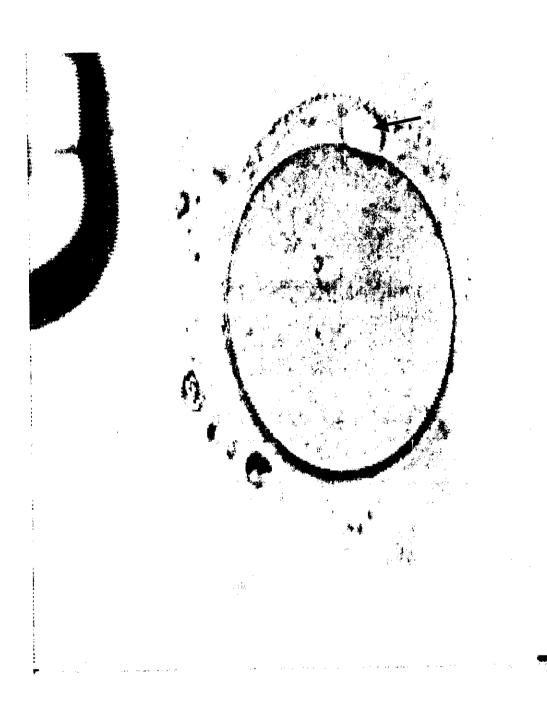


Fig. (13): Grade II: first polar body.



Fig. (14): Grade III: first polar body.

Fig. (15): Grade IV: First polar body.

