RESULTS

The results of the present study are summarised in tables (1 -21) and Figures (1-10)

Tablel 1:

Comparison between cases of the studied groups and control group regarding total bilirubin (mg/dl).

T.Bilirubin	Range	$ar{X}$	±SD	Test of signif. *control		
Studied groups	(mg/dl)	(mg/dl)	(mg/dl)	t	p	
Acute hepatitis group	4.2-14.6	8.02	±3.45	8.122	< 0.001	
Obstructive jaundice group	2.8-21	10.89	±5.95	6.579	< 0.001	
Cirrhosis group	0.9-1.5	1.45	±0.58	5.002	< 0.001	
Hepatocell. carc. group	0.4-8.2	2.45	±2.23	3.342	< 0.01	
Control group	0.4 -1	0.78	± 0.15	_	<u>-</u>	

P < 0.05 is significant

Analysis of the results

Table (1), Figure (1):

Showed that there was significant increase of total bilirubin in all of the studied groups in comparison to normal control group.

01_

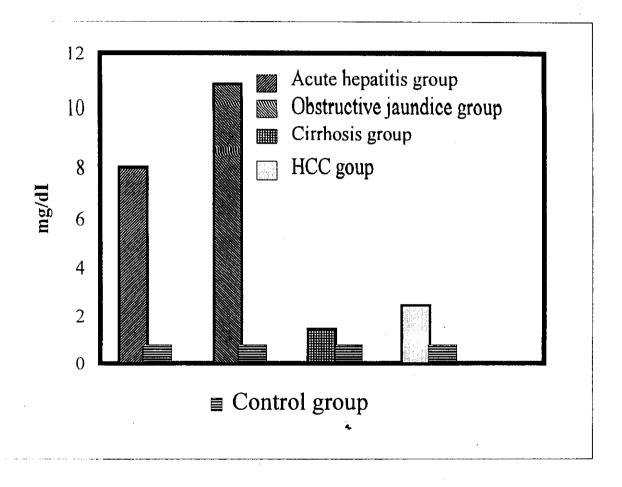


Figure (1)

Comparison between cases of the studied groups and control group regarding total bilirubin mg/dl

Table (2):

Comparison between cases of the studied groups and control group regarding direct bilirubin (mg/dl):

D.Bilirubin	Range	$ar{X}$	±SD	Test of signif. *contro	
Studied groups	(mg/dl)	(mg/dl)	(mg/dl)	t	p
Acute hepatitis group	1.8 -10.8	5.39	±2.61	7.744	< 0.001
Obstructive jaundice group	2•19.6	9.43	±5.5 7	6.438	< 0.001
Cirrhosis group	0.3-0.8	0.58	±0.28	6.353	< 0.001
Hepatocell. carc. group	0.3 - 5.8	1.55	±1.58	11.034	< 0.001
Control group	0.1 - 0.3	0.17	± 0.07	-	_

P < 0.05 is significant

Analysis of the results

Table (2), Figure (2):

Showed that there was significant increase of direct bilirubin in all of the studied groups in comparison to control group.

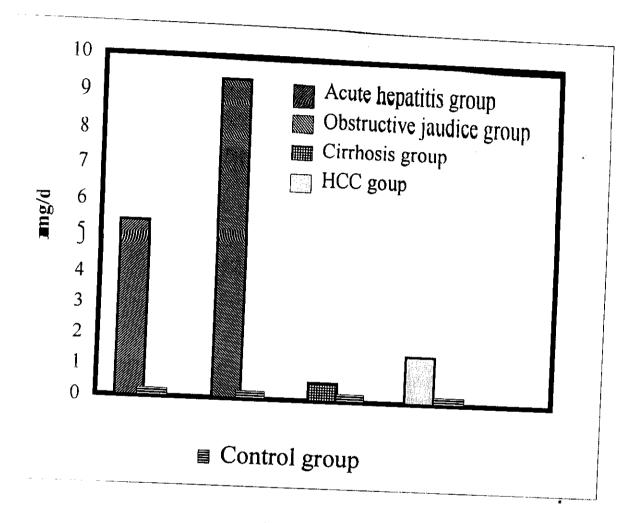


Figure (2)

Comparison between cases of the studied groups and control group regarding direct bilirubin mg/dl

Table (3) :

Comparison between cases of the studied groups and control group regarding total protein (g/dl):

T.protein	Range	\bar{X}	±SD	Test of sig	nif. *control
Studied groups	(g/dl)	(g/dl)	(g/dl)	t	p
Acute hepatitis group	6-9.3	7.47	±0.93	1.551	> 0.05
Obstructive jaundice group	6.3-8	7.15	±0.59	0.097	> 0.05
Cirrhosis group	6.4-8	7.54	±0.94	1.628	> 0.05
Hepatocell. carc. group	6.2-7.9	7.05	±0.46	0.463	> 0.05
Control group	6.1-8.1	7.13	± 0.62	_	_

P < 0.05 is significant

Analysis of the results

Table (3), Figure (3):

Showed that there was no significant difference between studied groups and control group.

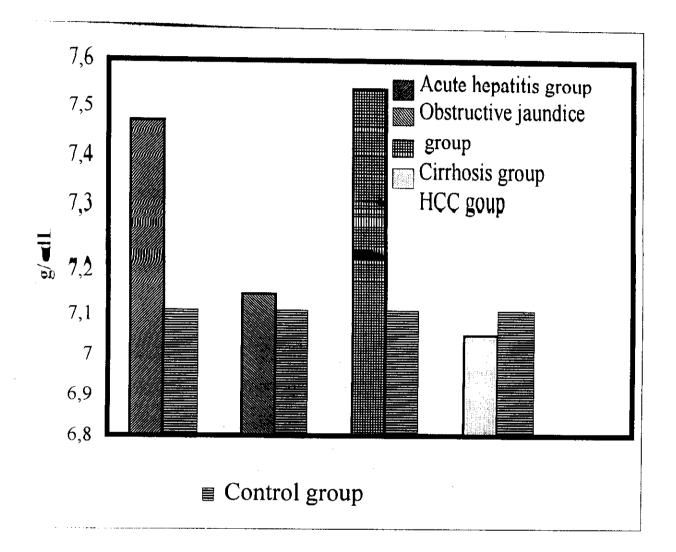


Figure (3)
Comparison between cases of the studied groups and control group regarding total protein g/dl

Table (4) :

Comparison between cases of the studied groups and control group regarding serum albumin (g/dl):

S.albumin	Range	$ar{X}$	±SD	Test of signif. *contr	
Studied groups	(g/dl)	(g/dl)	(g/dl)	t	p
Acute hepatitis group	3.1 -5.1	4.26	±0.62	0.713	> 0.05
Obstructive jaundice group	3.5-5	4.1	±0.46	1.968	> 0.05
Cirrhosis group	1.9-3.9	2.75	±0.55	10.878	< 0.001
Hepatocell. carc. group	2.5-4.5	3.56	±0.54	5.572	< 0.001
Control group	3.9-5	4.39	± 0.39	-	-

P < 0.05 is significant

Analysis of the results

Table (4), Figure (4):

Showed that there was no significant difference between both acute hepatitis group and obstructive jaundice group in comparison to control group, while there was significant decrease of serum albumin in both cirrhosis group and HCC group in comparison to control group.

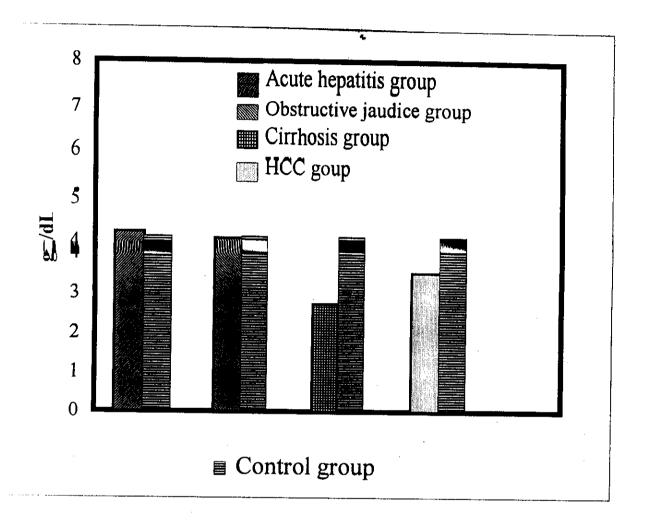


Figure (4)
Comparison between cases of the studied groups and control group regarding serum albumin g/dl

Table (5) :

Comparison between cases of the studied groups and control group regarding serum globulin (g/dl):

S.globulin	Range	\bar{X}	±ŠD	Test of sign	nif. *control
Studied groups	(g/dl)	(g/dl)	(g/dl)	t	ם
Acute hepatitis group	2.1-4.7	3.21	±0.67	2.268	< 0.05
			11		1144
Obstructive jaundice group	2.1-3.8	3.05	±0.59	1.629	> 0.05
Cirrhosis group	2.3-5.9	4.79	±1.06	7.794	<0.001
Hepatocell. carc. group	2-4.5	3.49	±0.69	3.909	<0.001
Control group	2-3.7	2.74	± 0.51	-	-

P < 0.05 is significant

Analysis of the results

Table (5):

Showed that there was a significant increase of serum globulin in acute hepatitis group, cirrhotic group and HCC group in comparison to control group, while there was insignificant difference of serum globlin in obstructive jaundice group in comparison to control group.

Table (6):

Comparison between cases of the studied groups and control group regarding A/G ratio:

A/G	Range	$ar{X}$	±SD	Test of signif. *contro	
Studied group				t	p
Acute hepatitis group	0.9-2.24	1.38	±0.37	2.293	< 0.01
Obstructive jaundice group	0.97-2.29	1.42	±0.43	1.784	> 0.05
Cirrhosis group	0.36-1.7	0.63	±0.31	10.011	< 0.001
Hepatocell. carc. group	0.56-2.25	1.09	±0.39	4.754	< 0.001
Control group	1.08-2.29	1.66	± 0.34	•	

P < 0.05 is significant

Analysis of the results

Table (6):

Showed that there was significant decrease in A/G ratio in acute hepatitis group, cirrhosis group, HCC group in comparison to control group, while there was no significant difference between obstructive jaundice group and control group.

Table (7):

Comparison between cases of the studied groups and control group regarding

AST (U/l):

AST	Range	\bar{X}	±SD	Test of sign	if. *control
Studied group	(wl)	(W1)	(w/l)	1	р
Acute hepatitis group	61-401	210.07	±100.47	7.002	< 0.001
Obstructive jaundice group	16-152	56.13	±44.33	2.430	< 0.05
Cirrhosis group	31-77	51.05	±23.41	4.131	< 0.001
Hepatocell. carc. group	25-72	44.75	±13.64	4.621	< 0.001
Control group	16-45	27.9	± 8.94		

P < 0.05 is significant

Analysis of the results

Table (7), Figure (5):

Showed that there was significant increase of AST in all of the studied groups (acute hepatitis group, obstructive jaundice group, cirrhosis group, HCC group) in comparison to normal control group.

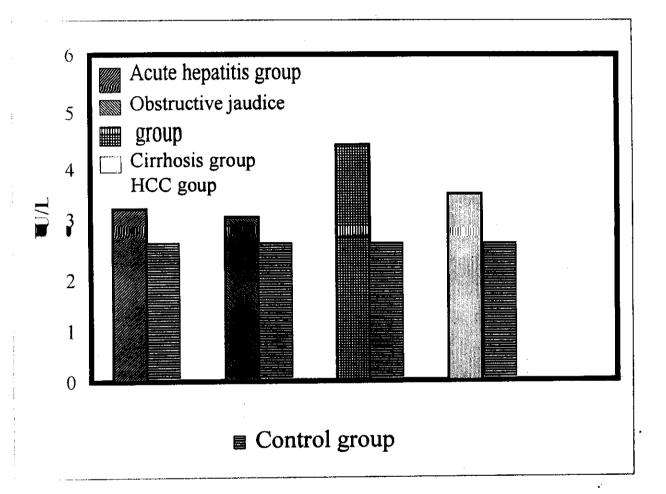


Figure (5)
Comparison between cases of the studied groups and control group regarding AST U/L

Table (8):

Comparison between cases of the studied groups and control group regarding $ALT\left(U/l\right)$:

ALT	Range	\bar{X}	±SD	Test of signif. *control		
Studied group	(u/l)	(u/l)	(u/l)	ŧ	р	
Acute hepatitis group	69-490	229.2	±107.12	7.322	< 0.001	
Obstructive jaundice group	19-171	54.87	±40.52	2.694	< 0.05	
Cirrhosis group	37-71	46.65	±30.0	2.953	< 0.01	
Hepatocell. carc. group	18-116	39.85	±21.47	2.688	< 0.05	
Control group	16-33	26.45	±6.01		-	

P < 0.05 is significant

Analysis of the results

Table (8), **Figure (6)**:

Showed that there was significant increase of ALT in all of the studied groups (acute hepatitis group, obstructive jaundice group, cirrhosis group, HCC group) in comparison to normal control group.

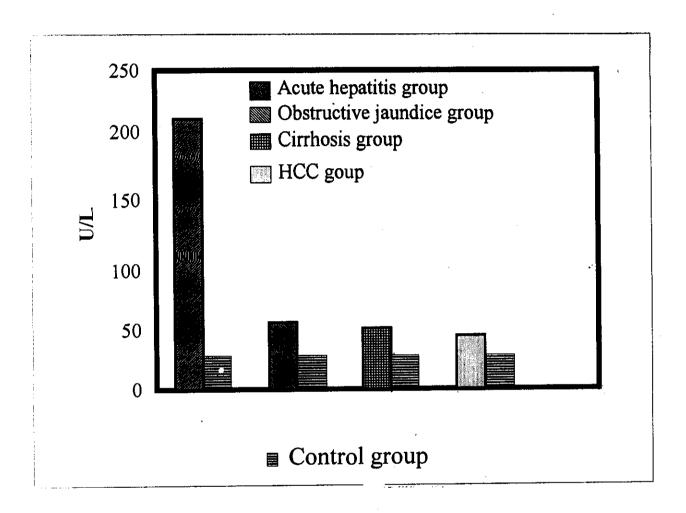


Figure (6)

Comparison between cases of the studied groups and control group regarding ALT/L

Table (9):

Comparison between cases of the studied groups and control group regarding ALP (K.A.U):

ALP	Range	\bar{X}	±SD	Test of signif. *cont	
Studied group	(K.A.U)	(K.A.U)	(K.A.U)	ŧ	p
Acute hepatitis group	12-41	21.8	±9.26	6.084	< 0.001
Obstructive jaundice group	28-88	53.27	±18.77	9.505	< 0.001
Cirrhosis group	6-19	13.4	±3.72	6.879	< 0.001
Hepatocell. carc. group	6-46	16.85	±10.26	4.229	< 0.001
Control group	4-11	7.05	± 1.79	-	•

P < 0.05 is significant

Analysis of the results

Table (9), Figure (7):

Showed that there was significant increase of ALP in all of the studied groups (acute hepatitis group, obstructive jaundice group, cirrhosis group, HCC group) in comparison to normal control group.

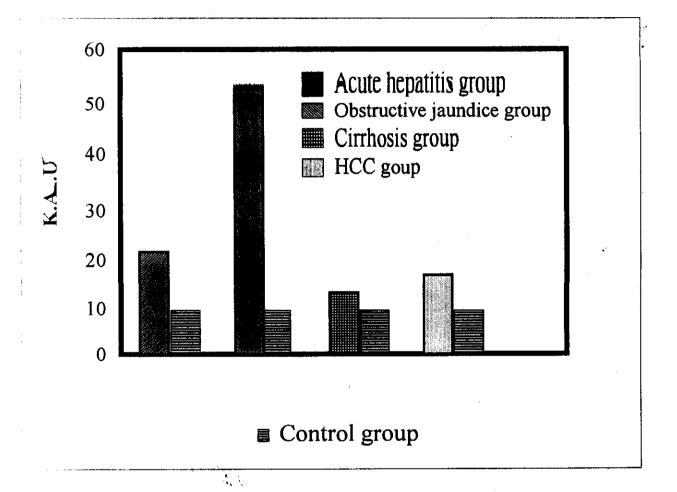


Figure (7)
Comparison between cases of the studied groups and control group regarding ALP (K.A.U)

Table (10) :

Comparison between cases of the studied groups and control group regarding $GGT\left(U/L\right)$:

GGT	Range	$ar{x}$	±SD	Test of sign	if. *control
Studied group	(U/L)	(U/L)	(U/L)	t	P
Acute hepatitis group	42-192	105.53	±41.69	7.675	₹0.001
Obstructive jaundice group	87-610	260.07	±161.34	5.718	< 0.001
Cirrhosis group	48-100	77.05	±44.20	5.504	< 0.001
Hepatocell. carc. group	42-91	62.6	±14.33	10.924	< 0.001
Control group	11-38	21.6	± 8.74	-	_

P < 0.05 is significant

Analysis of the results

Table (10), Figure (8):

Showed that there was significant increase of GGT in all of the studied groups (acute hepatitis group, obstructive jaundice group, cirrhosis group, HCC group) in comparison to normal control group.

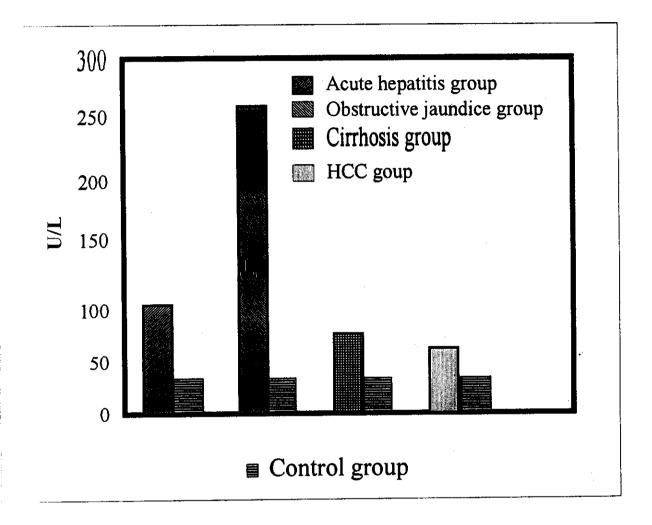


Figure (8)
Comparison between cases of the studied groups and control group regarding GGT (U/L)

Table (11):

Comparison between cases of the studied groups and control group regarding cICAM-1 (ng/ml):

cICAM-1	Range	X	±SD	Test of sign	lf. *control
Studied group	(ng/ml)	(ng/ml)	(ng/ml)	t	р
Acute hepatitis group	275-1295	853.87	±299.28	7.895	< 0.001
Obstructive jaundice group	288-1289	835.13	±339.28	6.773	< 0.001
Cirrhosis group	277-1068	560.55	±203.76	6.871	< 0.001
Hepatocell. carc. group	289-1520	815.7	±287.51	8.852	< 0.001
Control group	145-373	235.6	±56.75		-

P < 0.05 is significant

Analysis of the results

Table (11), Figure (9):

Showed that there was highly significant increase of cICAM-1 in all of the studied groups (acute hepatitis group, obstructive jaundice group, cirrhosis group, HCC group) in comparison to normal control group.

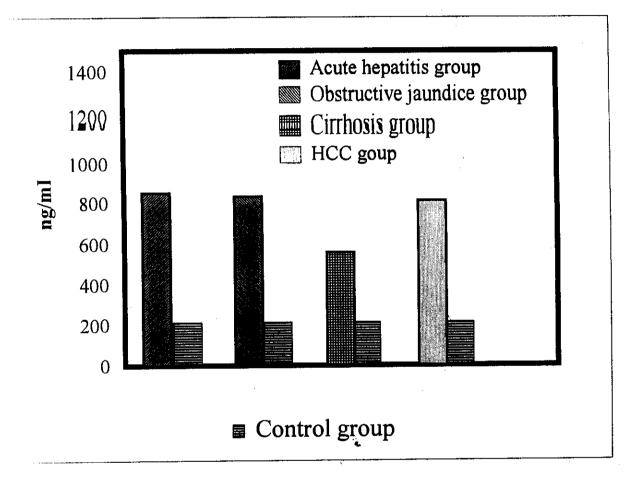


Figure (9)
Comparison between cases of the studied groups and control group regarding cICAM-1 (ng/ml)

Table (12):

Comparison between cases of the studied groups and control group regarding cICAM-1 (ng/ml):

cICAM-1	Range	\bar{X}	±SD	Test of sig	znif. *co	ntrol
Studied group	(ng/ml)	(ng/ml)	(ng/ml)	Between	ŧ	p
• Acute hepatitis group	275-1295	853.87	±299.28	1 * 2	0.246	> 0.05
				1 * 3	3.269	< 0.01
② Obstructive jaundice	288-1289	835.13	±339.28	1 * 4	0.379	> 0.05
group			4			
		Ť	·	1 * 5	7.895	< 0.001
Cirrhosis group	277-1068	560.55	±203.76	2 * 3	2.781	<0.01
.			·	2 * 4	0.179	>0.05
O Hepatocell.carc. group	289-1520	815.7	±287.51	2 * 5	6.773	< 0.001
				3 * 4	3.238	<0.01
⊙ Control group	145-373	235.6	±56.75	3 * 5	6.871	<0.001
.				4 * 5	8.852	<0.001

P < 0.05 is significant

Table (12), Figure (10):

Analysis of the results

Study of the mean of cICAM-1 level between the four studied groups and each other had been done, and significance of the difference between them had been calculated:

There was no-significant diagnostic difference between the mean of cICAM-1 level in acute hepatitis group and obstructive jaundice group.

There was highly significant increase of the mean of CICAM•1 level in acuto hepatitis group in comparison to cirrhosis group.

There was no-significant diagnostic difference between the mean of cICAM-1 level in acute hepatitis group and HCC group.

There was a significant increase of the mean of cICAM-1 value in obstructive jaundice group in comparison to cirrhosis group.

There was a significant increase of the mean of cICAM-1 value in HCC group in comparison to cirrhosis.

There was no significant difference bettween obstructive haundice group in comparison to HCC group.

Table (13):

Correlation between the level of cICAM-1 and liver functions in acute hepatitis group.

Variable	"r" value	P	significance
T.Bilirub in (mg/dl)	- 0.13	> 0.05	not. significant
D.Bilirubin (mg/dl)	0	> 0.05	not. significant
T. Protein (g/dl)	0.41	> 0.05	not. significant
Albumi n (g/dl)	0 .03	> 0.05	not. significant
Globulin (g/dl)	0.61	< 0.05	significant
A/G ratio	-0.50	> 0.05	not. significant
AST (U/L)	0.10	> 0.05	not. significant
ALT (U/L)	0.26	> 0.05	not. significant
ALP (K.A.U)	- 0.27	> 0.05	not. significant
GGT (U/L)	0.17	> 0.05	not. significant
HBsAg	- 0.104	> 0.05	not. significant
HCV-Ab	- 0.249	> 0.05	not. significant

P < 0.05 is significant

Analysis of the results

Table (13):

Showed that there was no significant correlation between the level of cICAM-1 and serum bilirubin, total protein, albumin, AST, ALT, ALP, GGT, HBsAg, or HCVab. But there was a positive significant correlation between the level of cICAM-1 and serum globulin.

Table (14):

Correlation between the level of cICAM-1 and liver functions in obstructive jaundice group.

Variable	"r" value	P	significance
T.Bilirubin (mg/dl)	0.36	> 0.05	not. significant
D.Bilirubin (mg/dl)	0.37	> 0.05	not. significant
1. Protein (g/dl)	0.14	> 0.05	not. significant
Albumin (g/dl)	0 .38	> 0.05	not. significant
Globulin (g/dl)	- 0.15	> 0.05	not. significant
A/G ratio	0.25	> 0.05	not. significant
AST (U/L)	0.28	> 0.05	not. significant
ALT (U/L)	0.07	> 0.05	not. significant
ALP (K.A.U)	- 0.09	> 0.05	not. significant
GGT (U/L)	0.17	> 0.05	not. significant

P < 0.05 is significant

Analysis of the results

Table (14):

Showed that there was no significant correlation between the mean value of cICAM-1 and different studied liver function parameters.

Table (15):

Correlation between the level of cICAM-1 and liver functions in cirrhosis group.

Variable	"r" value	P	significance
T.Bilirubi n (mg/dl)	0.29	> 0.05	not. significant
D.Bilirubin (mg/dl)	0.37	> 0.05	not. significant
T. Protein (g/dl)	0.09	> 0.05	not. significant
Albumin (g/dl)	0 .05	> 0.05	not. significant
Globulin (g/dl)	0.04	> 0.05	not. significant
A/G ratio	0.03	> 0.05	not. significant
AST (U/L)	0.12	> 0.05	not. significant
ALT (U/L)	0.22	> 0.05	not. significant
ALP (K.A.U)	- 0.14	> 0.05	not. significant
GGT (U/L)	0.27	> 0.05	not. significant

P < 0.05 is significant

Analysis of the results

Table (15):

Showed that there was no significant correlation between the mean value of cICAM-1 and different studied liver function parameters.

Table (16): Correlation between the level of cICAM-1 and liver functions in HCC group.

Variable	"r" yalue	P	significance
	0.48	> 0.05	not. significant
T.Bilirubin (mg/dl)	0.42	> 0.05	not. significant
D.Bilirubin (mg/dl)	0.23	> 0.05	not. significant
T. Protein (g/dl)	0.23	> 0.05	not. significant
Albumin (g/dl) Globulin (g/dl)	0.01	> 0.05	not. significant
A/G ratio	0.04	> 0.05	not. significant
AST (U/L)	0.44	> 0.05	not. significant
	0.35	> 0.05	not. significant
ALT (U/L)	0.04	> 0.05	not. significant
ALP (K.A.U) GGT (U/L)	- 0.27	> 0.05	not. significant

P < 0.05 is significant

Analysis of the results

Table (16):

Showed that there was no significant correlation between the mean value of cICAM-1 and different studied liver function parameters.

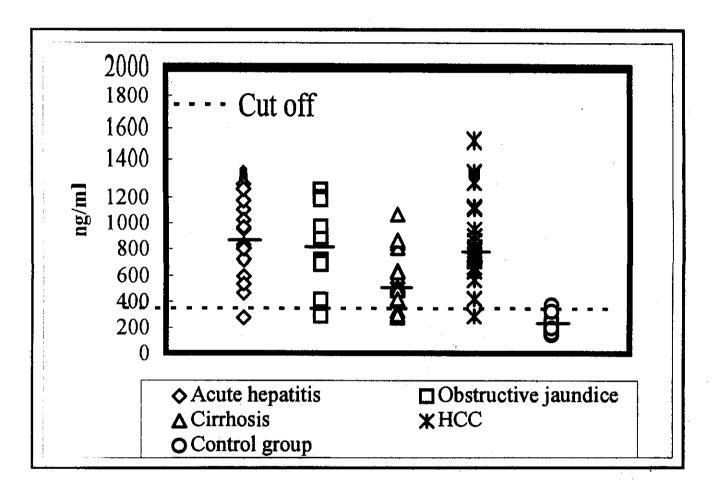


Figure (11)

Scatterplot of individual values of serum cICAM-1 levels in the studied population.

A dotted line represent cut off value (cut off value = mean of control + 2 SD),

horizontal bars indicate mean value.

Tabl	Table (17)														
Ĭ.	aster sh	neet for	Master sheet for cases of acute hepatitis. Number of cases (15). Number of variants(20).	acute he	patitis. I	Jumber (of cases	(15).1	Number	of varia	nts(20).				
°Z	180	Sa	T.Billir.	D.Bille.	T.prot.	Albam.	Glob	9/1	AST	YTY	ALP	GGT	HBs4g	HCV.Ab	Cashed)
,	(years)		(mg/ql)	(mmg/dt)	(8/91)	(8/40)	(8/41)	╅		(0//2)	220	112		0	X105
,	30	N .	22	2	3 :	4.0		6,76	, S.	960	37	2		•	7174
,	77		0	•	2.6	3.1	3.7	137	328	327	30	192	I	0	807
	2%	E N	971	10.8	6.7	07	3.2	1.53	107	067	21	81	0	0	#295
	7,8	. 2	7.3	7	واة		2.0	1.07	197	110	27	011	I	0	952
و	32	1	43	3.9	7.7	17	33	177	130	167	61	11	9	1	296
2	22	×	87	3	22	43	2.9	1.48	19	69	13	06	I	0	721
•	25	N	10.6	2	2.0	4.6	33	1.39	268	207	91	73	0	0	465
•	35	is a	47	3.9	23	67	3.3	7.48	192	260	21	183	1	I	\$30
91	72	. 3	03	17	7.5	,	3.5	777	302	350	91	091	1	0	1025
11		×	7.2	4	7.8	3.7	77	0.90	101	122	12	68	0	Z	1259
13	32	M	12.7	8.7	8.8	4.7	2.1	2.24	911	195	14	18	1	1	201
13	26	iz.	141	16.3	7	4.6	2.4	1.92	111	255	31	101	I	7	275
11	6/	M	77	1.8	6.2	3.9	2.3	1.70	143	161	18	2	1	0	535
15	7	W	9.5	3.9	6.4	3.1	3.3	2.67	319	787	26	103	7	0	908
Min.	18		77	1.8	9	3.1	2.1	0.90	19	69	12	2			27.5
Mex	7		14.6	10.8	9.3	5.1	4.7	224	101	190	41	192			CK71
Mean	27.9		8.02	5.4	7.5	4.3	3.2	1.38	210.07	229.2	21.8	105.53			633-60
S	13.42		3.45	7.61	4.92	19.0	99.0	0.37	100.47	107.12	9.25	41.69			133-41

Tab_{ν}	<i>Table (18)</i>					,•							
	faster s	heet fo	Master sheet for cases of obstruct	obstruct	live jaur	dice. N	umber o	of cases	s (15). I	Vumber (live jaundice. Number of cases (15). Number of variants (20)	ts (20)	
ŝ	Age	Š	T.Bilir.		T.prot.	Album.	Glob	9/V	AST	ALT	ALP	GGT	ciCAM-1
,	(years)		(mg/dl)	(mg/dl)	(B/dl)	(g/dl)	(g/dl)		(U/L)	(Q/Z)	(K.A.U)	(UZF)	(ne/mal)
91	42	F	7.7	64	6.1	3.5	67	1.21	23	25	3	7.4	71.5
17	35	F	32	2.6	1.7	3.8	3.3	1.15	67	89	3	181	1763
18	43	M	11.3	8.8	6.3	3.9	2.4	1.63	109	00	0	121	2011
19	42	F	14.3	12.1	7.9	4.5	3.4	1.32	127	11/2	"	350	089
20	51	M	6.5	5.9	7.2	17	3.1	1.32	108	06	20	282	886
77	36	M	8,9	6.9	6.3	3.5	2.8	1.25	97	77	15	280	288
77	7	F	1404	12.9	7.8	4.2	3.6	1.17	36	52	11	205	97.2
23	35	F	3.6	2.9	7.2	3.9	3.3	1.18	30	\$3	8/	9.7	1117
77	21	M	16.4	14	8	4.6	3.4	1.35	152	09	89	244	1187
25	36	R	5.2	4.6	7.2	5.0	2.2	2.27	22	17	88	141	069
26	39	M	2.8	2	7.6	3.8	3.8	1.00	91	77	\$	8.0	537
27	47	F	19.2	8.2	6.3	4.2	2.1	2.00	27	12	28	029	865
28	35	M	13.9	11.5	6,9	4.8	2.1	2.29	77	45	40	370	1181
23	39	F	15	131	7.3	3.6	3.7	0.97	11	47	40	364	373
30	97	F	21	9.61	7.7	1.7	3.6	1.14	32	39	77	172	1280
Min.	33		2.8	2	6.3	3.5	2.1	0.97	91	39	28	87	288
Max.	21		71	19.6	80	5	3.8	2.28	152	96	88	670	1289
Mean	10.47	7	10.89	9.43	7.14	4.1	3.04	1.41	56.13	54.86	53.26	260_07	835.13
as	11.67		5.94	5.57	0.59	0.45	0.59	0.43	44.32	40.52	18.77	161_34	339.28

Table (19) :

* ***	CICAM-1	(ma/bun)	517	534	414	845	522	499	550	807	594	329	639	277	108	\$12		867	487	619	1068	629	298	277	1068	560.55	203.75	
	CGL	(U/L)	74	19	77	100	2	9/	95	63	86	85	29	77	87	2	99	8/	28	20	76	83	105	87	105	77.05	44 20	
nts (20).	AMA	R T D	9_1	,,,	5			77	i i	6	7	18	16	2	7.0	70	0	12	71	87	0,	1,5	87		02	13.7	2.71	3:,7
Number of cases (20). Number of variants	ALT	(0/17)	27	97	72		3	2 3	36	3	. 12	202	3		77	30	42	3,6	37	83	8	2	2 2	26	30		40.03	8
Number	TSF	(WW)	**		2	36	\$	3	\$ 2	76	2	26	1	3	47	72	75	37	77		7,	•	Ç E	*;	2/1		51.05	23.40
(20)	A/G	1	100	24.5	9	4.5	0.30	33	0.34	6.3	7.4.7	0.40	6,7	0.70	0.42	0.37	0.68	72.0	0.70	0.01	0/.7	1.03	0.63	0.54	0.35	1:7	0.62	0.30
of cases	Clob	(17/1)		0.0		6:9	5.9	2.1	5.2	; ;	70	3.5	4.8	4.6	4.5	5.1	1.1		7.6	7.	2.3	3	4.8	5.2	23	5.9	4.78	1.06
Number (4/ham	(1/2/47)	(Mar)	7.4	2.5	2.8	2.1	2.7	2.8	7	2.5	2.5	3.5	3.2	1.9	1.9	2.8		3.1	3.4	3.9	3.2	3	2.8	1.9	3.9	2.75	0.54
uD.	3	1. P. S.	(K/an)	20	6.7	7.7	80	7.8	•	7.7	8.6	80	3	7.8	6.4	7	6.9		7.2	2.6	6.2	63	7.8	90	6.1	8	7.53	0.93
rrhosis g		D.Duar.	(mg/an)	0.8	9.0	1.3	9.0	0.5	0.4	0.1	1.1	1.1	0.5	0.4	0.3	0.7	0.4		0.5	0.7	0.4	a.3	0.5	0.1	0.3	1.3	0.58	0.28
Master sheet for cases of cirrhosis gro	10 505	I.Bum.	(mg/dl)	1.1	0.9	1.7	1.5	1.4	1.3	1.3	3.5	2.5	1.3	I	I.I	1.6	1.2		1.5	1.5	1.2	1.3	1.4	1.3	9.0	1.5	1.45	0.57
et for c		ğ		Ж	M	14,	W	M	M	F.	į,	M	M	H	×	*	i a	,	M	M	×	F	M	H				
tor che		Age	(years)	47	48	25	\$	26	94	42	64	19	55	99	85	3		5	55	59	29	52	84	58	27	62	53.1	7.07
Mac	INTERNATION OF THE PROPERTY OF	ŝ		31	32	33	34	35	36	37	38	39	9	117	70	2 %		:	45	94	12	*	6#	95	Min	Max	Mean	as

Table (20) :

	CICAM-1	(mg/mg)	633	954	267	431	638	1520	1309	999	715	742	758	758	72.1	867	905	1113	1130	289	200	878	289	1520	815.7	287.5
- - -	200	(U/L)	67	82	11	16	299	**	77	11	56	19	3	7.2	8₹	40	09	52	55	70	73	77	12	76	62.6	14.32
s (20).	ALP	(K.A.U)	28	77	9	13	36	6	21	18	80	15	14	21	13	8	94	91	11	01	8	6	9	94	16.85	10.26
group. Number of cases (20). Number of variants (20)	ITY	(U/L)	30	911	22	36	30	50	40	37	23	20	81	54	11	23	09	55	13	32	43	30	81	911	39.85	21.46
umber o	TSY	(U/L)	51	SS	97	9	51	**	72	09	32	25	97	53	77	32	45	29	69	33	17	36	25	22	44.75	13.63
20). N	9/4		1.29	0.76	99.0	1.03	0.56	0.88	1.14	0.94	1.40	1.15	2.25	1.05	1.12	1.74	1.26	19.0	61.1	99.0	1.07	1.06	0.55	2.25	1.09	0.39
cases (7	Glob.	(E/dI)	2.8	17	1.4	3.7	4.5	4.2	3.5	3.5	8	3.4	2	3.8	3.4	2.3	3.1	77	3.1	17	~	172	2	5,	3.48	0.68
imber of	Album.	(E/dI)	3.6	2.1	2.8	3.8	2.5	3.7	•	3.3	4.2	3.9	4.5	*	3.8	•	3.9	2.7	3.7	2.9	3.2	98	2.5	7.5	3.56	0.54
onb. Nu	T.prot.	(p/a)	7.9	7.2	6.9	2.5	7	2.9	7.5	879	2.2	7.3	6.5	7.8	7.2	6.3	7	7.1	83	7.3	23	7	, 29	20	7.07	0.46
HCCg	D.Bilir.	(me/dl)	13	3.2	0.4	0.3	1.5		5.5	I	9.0	II	1.3	0.0	2.5	0.5	85	1.2	1.6	70	9.0	80	n3	8.5	7.55	1.58
Master sheet for cases of HCC	T.Bilir.	(me/dl)	2.10	200	0.60	0.40	2.10	1.50	8.20	1.80	1.00	1.50	1.70	1.10	3.10	1.00	7.80	2.20	4.30	1.10	1,60	080	70	8.2	2.44	2.22
heet fo	Sex		12	. 3	×	iz.	12		W	×	×	X	×	*	×	7	×	*	X	J.	is.	, 7	747			
Master s	486	(vears)	83	2	3 8	9	8	5	05	98	339	99	23	19	3	3	3	3 3	29	283	8	3 %	\$ \$	2	31.69	5.53
7	ŝ)	13	5	25	3	35	25	57	85	0,5	09	19	29	3 5	3	3	3 3	23	3	3	92	Min	Mar	Mean	SD.

_	(U/L) (ng/ml)	16 230	22 218	571 72	+	1	38 248	377 778	13 188	27 219	21 260	15 160	36 239	11 227	18 226	20 267	31 320	11 251	12 373	23 325		861 81	11 145	3.8 3.73	21.6 235.6	26 75
ATY	(K.A.U)	9	000	•	,	••	5	7	•	10	*	6	7	٧	1	111	90	7	*	,	7	3	•	III	7.05	8, 1
ALT	(NT)	32	27		19	71	31	77	22	29	17	12	*	92	3 2	26	2/	22	33	32	17	33	91	33	26.45	107
AST		36	3 6	36	24	18.	25	21	12	12	27	\downarrow	1	-	-	1	-	\downarrow	+	-	+	\downarrow	\downarrow	\downarrow	1	\downarrow
4/6		\$	2 2	7.03	1.75	1.77	1 08	1	2 2	╁	\dagger	2.50	\dagger	+	1.15	+	+	7.04	\dagger	+	\dagger	+	\dagger	\dagger	╁	\dagger
Acros		** 		7.7	2.8	22	27		3 :	775	 -	7,7	\ -	27)	1	+		+	7	+	a	-	7	$\frac{1}{1}$	3.7	+
1	Album.	(8/11)	4.2	4.6	4.9	3.0		• ;	3.9	\$\\ \	↑	\$:	7	4.6	7	77		7	• ; -	3.9		*	\ 	2.5	+	4.30
	T.prof.	(B/di)	7.2	& 6,8	7.7	1,3	200	/ <u>/</u> /	6.2		//	6,9	2	7.7	7.7	89	6,9	\	7.2	69	7.9	8	22	6.1	+	77.7
101	D.Bilir.	(mg/dl)	0.2	0.2	9	200	0.2	a.I	9.2	ğ	a.	a.2	a.	0.3	a.i	9.7	9.7	9.7	9.2	70	9.7	0.3	9.2	9.1	93	0.17
• Master silect for control ere-	T.Bilir.	(mg/8dl)	0.8	60	20	à.	ao	I	6.0	0.7	0.8	9.6	6.0	8.0	a.7	0.7	0.4	0.8	0.9	1	9.7	0.8	0.9	9.1	7	0.78
· IVIAS	Sex		W	7	-	*	M	M	M	F	M	F	F	M	M	M	M	M	M	M	M	H	F			
1 apre (21)	Age	(years)	27	27	C#	27	38	37	27	27	27	33	34	\$	14	30	32	43	111	\$	39	26	27	26	_	34.75
(ane	ů		12	3	"	23	7.4	7.5	26	11	78	6%	80	18	\$2	83	2	85	98	87	88	89	06	Min.	Max.	Mean