Results

The results of this work are illustrated in the following Tableles and figures:

Table (1) show comparison between patients with HIE and control group as regard clinical data. Patients with HIE showed significant increased respiratory rate compared with the control group (P < 0.001). (figure 1) Apgar score at 1, 5 and 10 minutes were significantly decreased in patient with HIE compared with the control group (p < 0.001, p < 0.001& p < 0.001 respectively). (figure 2) Where as there was no significant difference between two groups as regards other variables.

Table (2) shows comparison of arterial blood gases between patients with HIE and control group. Patients with HIE showed significant decreased Pa O_2 , blood pH, serum bicarbonate levels compared with the control group (p = 0.001, p = 0.001, p = 0.001 respectively). Where as Pa Co_2 was significantly higher in patient with HIE versus the control group (p = 0.001). (figure 3)

Table (3) shows comparison of urinary uric acid, urinary creatinine and urinary uric acid / creatinine ratio between patients with HIE and control group. Patients with HIE showed significant increase in urinary uric acid and urinary Ua./Cr. ratio compared with control group (p < 0.05, p < 0.001 respectively) where as urinary creatinine show insignificant decrease in HIE patients compared with control group (p > 0.05). (figure 4), (figure 5).

Table (4) shows distribution of patients in the three subgroup of Asphyxia and their asphyxia score. Subgroup A (n = 7 = 28%) with mean Asphyxia score of 13.43, subgroup B (n = 14 = 56%) with mean

Asphyxia score 16.64 and subgroup C (n = 4 = 16%) with mean Asphyxia score 17.75. (figure 6).

- Table (5) shows mean and standard deviation of arterial blood gases parameters in different asphyxia subgroups (pH, Po₂, PaCo₂ & Hco₃). (figure 7)
 - Table (6) shows mean and standard deviation of chemical parameters in different asphyxia subgroup. (urinary uric acid, urinary creatinine & urinary uric acid/ creatinine ratio). (figure 8).
 - Table (7) shows comparison of arterial blood gases between different subgroup of asphyxia. There was significant decrease of pH, bicarbonate level with increase degree of asphyxia (p < 0.05, P < 0.001) respectively). There was significant increase of PaCo₂ with increase in the degree of asphyxia (p < 0.05), where as other parameters are in significant.
 - Table (8) shows comparison of chemical parameters between different subgroup of asphyxia. There were significant increase of levels of urinary uric acid and urinary uric acid/ creatinine ratio with the increase of the degree of asphyxia (p< 0.05, p< 0.05 respectively). Where as other parameter is insignificant.
 - Table (9) comparative study of uric acid/ ceratinine ratio between asphyxia subgroups. A vs B (p = 0.084), A vs C (p = 0.027) and B vs C (p = 0.004).
 - Table (10) show correlation coefficient between uric acid/creatinine ratio and clinical data in the study. Ua./ Cr. ratio was significantly positively correlated with asphyxia score and stage of asphyxia and significant negative correlation with Appar score at 1, 5 & 10 minutes. Where as no significant correlation was found between

Ua./ Cr. ratio and other clinical variable (p < 0.01, p < 0.05, p < 0.05, p < 0.001 and p < 0.001 respectively), (figure 9,10,11,12,13),

Table (11) shows correlation coefficient between Ua./ Cr ratio and arterial blood gases. The ratio was significant negatively correlation with pH, Po_2 & Hco_3 (p < 0.05, p < 0.05 & p< 0.05 respectively), (figure 14.15).

Table (12), (13) shows the validity test parameters on using the cut off point which was 1.43 the sensitivity, specificity, positive predictive value, negative predictive value and Accuracy (92%, 100%, 100%, 88.2% and 95% respectively).

Table (1)
Comparative study of clinical data between patients
with a asphyxia and control groups

•				100000000000000000000000000000000000000
studial	Group I n=15	Group II n=25	•	p I
भित्र को प्रसूचित इस लाउन	$\overline{X} \pm SD$	$\overline{X} \pm SD$		
The second of th	7 ± 0.92	1.6 ± 086	18.61	< 0.001
angur 1	9.53 ± 0.52	3.65 ± 0.96	22.16	< 0.001
3030 5	9.57 ± 0.51	5.2 ± 0.25	22.3	< 0.001
Augus W	138 ± 13.73	132.4 ± 30.86	0.66	>0.05
Reporte	37.6 ± 2.06	59.04 ± 10.83	7.55	<0.001
edion la	38.6± 0.98	38.96 ± 1.48	0.83	>0.05
(Coroles)	3430 ± 221.84	3278 ± 357.67	1.48	>0.05
(quality) Length	48.27 ± 1.83	48.36 ± 2.69	0.12	>0.05
(Giil) Heath	34.53 ± 1.31	34.44 ± 1.98	0.16	>0.05
(લા)) વાલામાં લેક લાહ				

P* = < 0.05 (significant)

Table (2)

Comparative study of arterial blood gases between patients with asphyxia and control group

Group 1 n=15	Group 11 n=25	t	p I
X ±SD	$\overline{X} \pm SD$		
	7.16 ± 0.21	4.02	<0.001
	54.24 ± 17.78		<0.001
	47.34 ± 22.18	4.2	<0.001
	12.81 ± 6.87	5.26	<0.001
	Group 1 $_{n=15}$ $\overline{X}\pm SD$ 7.37 ± 0.03 91.66 ± 0.52 23.06 ± 2.18 22.4 ± 1.88	$\overline{X}\pm SD$ \overline{X} \pm SD 7.37 \pm 0.03 7.16 \pm 0.21 91.66 \pm 0.52 54.24 \pm 17.78 23.06 \pm 2.18 47.34 \pm 22.18	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

P = < 0.05 (significant)

pH: blood pH, PaO2: partial arterial oxygen tension.

PaCO2: partial arterial carbon dioxide tension.

HCO3: serum bicarbonate level.

Table (3)

comparative study of chemical parameters between patent with asphyxia and control group.

is officient	Group I no15	Group II no25	t _e	P
v.i.didder	X + SD (mg/dl)	X + SD(mg/dl)		
Weller Willers	19.27 + 7.79	29.56 ± 15.49	2.8	<0.001
विकास कर विद्यासित	17.33 + 5.81	16.64 ± 5.49	0.37	>0.05
CHALLINY ULIKA	1.07 ± 0.18	1.72 ± 0.46	6.34	<0.001

P = < 0.05 (significant)

Ua = uric acid, Cr = creatinine.

Table (4)

Distribution of patients in the three subgroups and their Asphyxia score

				A	sphyxia sc	ore	
Comin	No	%	Min.	Max.	Mean	SD	Median
Stelgen(Ca)	7	28	8	17	13.46	3.59	15
डामुडाम(छ)	14	56	12	20	16.64	2.41	17
Shigaill	4	16	13	20	17.75	3.02	19
(C) ±							

Table (5)

Mean and stander of arterial blood gases parameters in different asphyxia subgroups.

જાળીધા	Subgroup (A) n=7	n = 14 (B)	n=4(C)
Handridge.	→ ≯X±SD→	$\overline{X} \pm SD$	X±SD €
UL	7.29 <u>+</u> 0.06	7.15 ± 0.22	6.93 ± 0.09
HIEL	62.85 <u>+</u> 22.41	52.61 ± 12.37	44.9 ± 23.63
HICLE	36.58 ± 16.97	45.38 ± 19.53	73 ± 23.31
ા લાકો	16 ± 2.46	11.77 ± 2.97	9.77 ± 1.48

 $\overline{\mathbf{X}}$

: mean value, SD: stander, deviation

pН

: blood pH, PaO2: partial arterial oxygen tension.

PaCO2

: partial arterial carbon dioxide tension, HCO3: serum

bicarbonate level

Table (6)

Mean and stander deviation of chemical parameters in different asphyxia subgroups.

	(A) n=7	(B) $n = 14$	(C) n= 4
studiulikā induis	X±SD	X±SD	X±SD
mahmay Odbetstil	26.57 <u>+</u> 13.64	26.71 ± 6.71	44.75 ± 31.42
maining Chattitlite	16.1 <u>+</u> 4.17	16.78 ± 5.24	17.25 ± 9.29
Walifalay W.Y/Yr	1.45 ± 0.63	1.64 ± 0.39	2.45 <u>+</u> 0.51

Ua: uric acid, Cr = creatinine.

Table (7)

Comperative study of arterial blood gases parameters between different subgroups of asphyxia.

Multial	(A) _{b=14}	(B) _{n=14}	(C) n=4	**************************************	
judadilla Gr	X± SD	$\overline{X} \pm SD$	$\overline{X} \pm SD$		P
i);	7.29±0.06	7.15 ± 0.22	6.93 ± 0.09	5.66	<0.05*
DO.	62.85± 22.41	44.9 ± 23.63	44.9 ± 23.63	1.49	>0.05
IF CO.	36.58± 16.97	73 ± 23.31	73 ± 23.31	4.62	<0.05*
H(c(o),	16 ± 2.46	11.77 ± 2.97	9.77 ± 1.48	13.38	<0.001

Table (8)

comparative study of chemical parameters between different subgroups of asphyxia.

ડાણાલ	(A) n=7	(B) n=14	(C) n=4 🚜	* †	ü
ph didds	X± SD	$\overline{X} \pm SD$	$\overline{X} \pm SD$		P
ىلىلىلى بەردىلىلىلى رىلىل	26.57±13.6 4	26.71 ± 6.71	44.75 ± 31.42	4.4	<0.05*
Wildley :	16.1± 4.17	17.25 ± 9.29	17.25 ± 9.29	0.06	>0.05
TOTAL CONTRACTOR	1.45± 0.63	1.64 ± 0.39	2.45 ± 0.51	5.68	<0.05*

P' = < 0.05 significant.

Table (9)

Comperative study of uric acid/credinine ratio between Asphyxia subgroups

		A	В	C
. 7	A		0.084	0.027
	В	0.084		0.004 法法
	C	0.27	0.004	

P' = < 0.05 significant.

Table (10)

correlation coefficient between uric acid/ creatinine ratio and clinical data in the study

Sindled parameter	A THE ASSESSMENT OF THE PROPERTY OF THE PROPER	TP CONTRACTOR	
Stage of asphyxia	0.52	P<0.01*	र प
Applystated to	0.45	in one	
Pluse	-0.33	p>0.05	
Replationate	10,3%	1020105	***
Weight	-0.49	p>0.05	
THEIR	0.02		
Head circumference	-0.04	p>0.05	
Apgarant	30131	Paulipa .	
	-0.49	P<0.001*	i.
Apgar 5	U 1/4	PAUMUN	

P*=<0.05(significant)

Table (11)

correlation coefficient between uric acid creatinine ratio and arterial blood gases

pH	-0.38	P<0.05*
2012/	UHS	PAONS
PCO 2	-0.28	p>0.05

P*=< 0.05 (significant)

Table(12)

Validity of uric acid/creatinine ratio in diagnasis of perinatal asphyxia

UA/cr radio	Group I n=15	Clambiles
		23
LIVE	15	2 17 ·
	15	25 25 26 26 27 27 27 27 27 27 27 27

Table (13)

Validity test parameters

Parameters :	Percent:
Specificity	100%
Sensitivity	92%
+ ve Predictive value	100%
- ve Predictive value	88.2%
Validity (Accurey)	95%

The figures show:

- Fig. (1) shows the mean values of respiratory rate and pulse rate in control and asphyxia groups.
- Fig. (2) shows the mean value of Appar score at 1, 5 and 10 minutes in control and asphyxia groups.
- Fig. (3) shows the mean values pH, Po₂, Pco₂ and serum Hco₃ level in control and asphyxia groups.
- Fig. (4) shows the mean values of urinary creatinine and urinary uric acid in control and asphyxia groups.
- Fig. (5) shows the mean values of urinary uric acid/creatinine ratio in control and asphyxia groups.
- Fig. (6) shows the distribution of patients according to stage of asphyxia.
- Fig. (7) Shows mean values of pH, Po₂, Pco₂ and serum Hco₃ level in different stages of asphyxia.
- Fig. (8) shows mean values of urinary uric acid/creatinine ratio in different stages of asphyxia.
- Fig. (9) shows positive correlation between urinary uric acid/creatinine and stage of asphyxia (r = 0.52, p < 0.01).
- Fig. (10) shows positive correlation between urinary uric acid/creatinine and asphyxia score (r = 0.45, p < 0.05).
- Fig. (11) shows negative correlation between urinary uric acid/creatinine ratio and Appar score at 1 minute (r = -0.31, p < 0.05).
- Fig. (12) shows negative correlation between urinary uric acid/creatinine ratio and Appar score at 5 minutes (r = -0.49, p < 0.001).

- Fig. (13) shows negative correlation between urinary uric acid/creatinine ratio and Appar score at 10 minute (r = -0.74, p < 0.001).
- Fig. (14) shows negative correlation between urinary uric acid/creatinine ratio and pH (r = -0.38, p < 0.05).
- Fig. (15) shows negative correlation between urinary uric acid/creatinine ratio and Po_2 (r = -0.48, p < 0.05).
- Fig. (16) shows the urinary uric acid/ creatinine ratio in asphyxia and control groups.

Fig (1) Mean values of respiratory rate and pulse rate in control and asphyxia groups

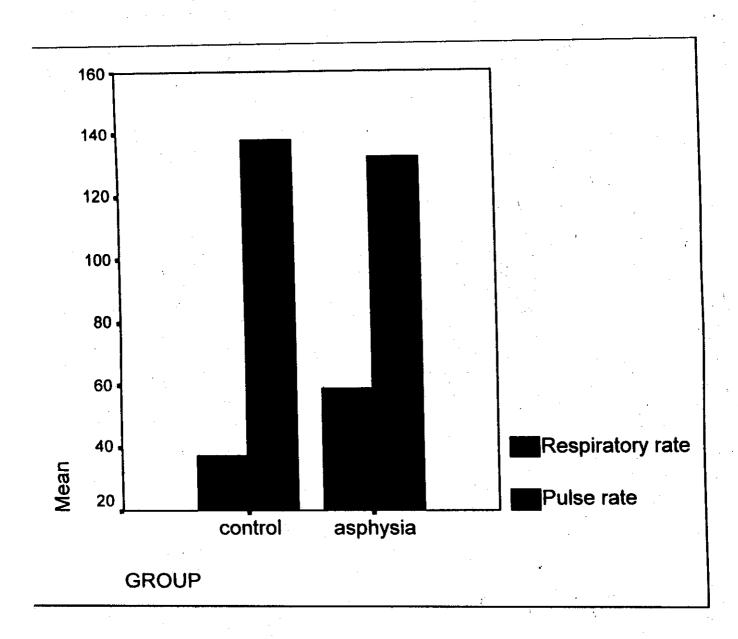
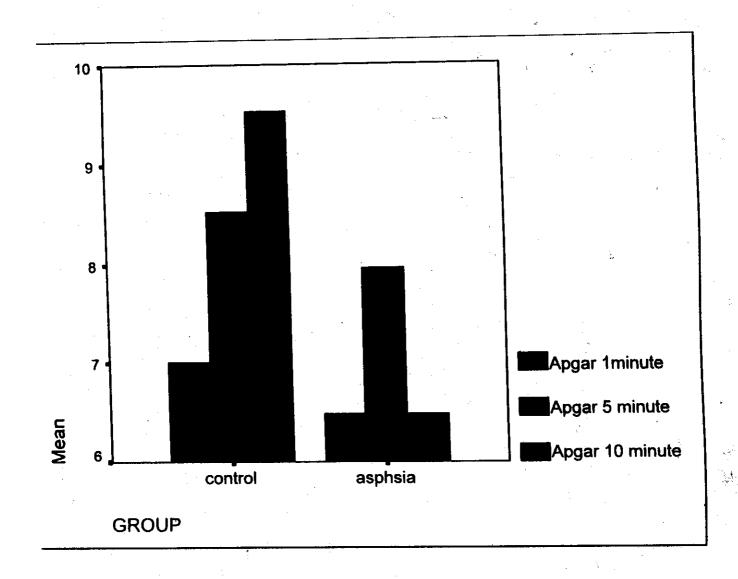
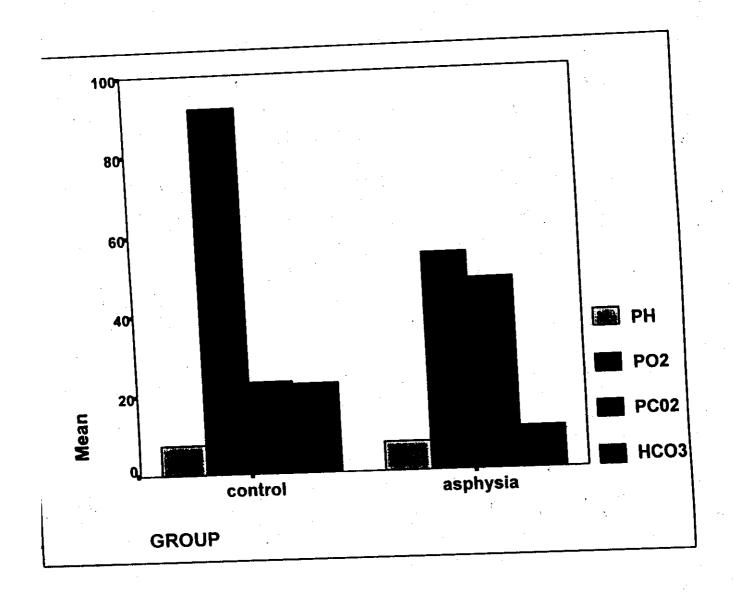




Fig (2) Mean values of Apgar at 1, 5 and 10 minutes in control and asphyxia groups.

(3) Mean values of pH, PO₂, Pco₂ and Hco₃ in control and asphyxia groups.

ig. (4) mean values of urinary creatinine and urinary uric acid in control and asphyxia groups.

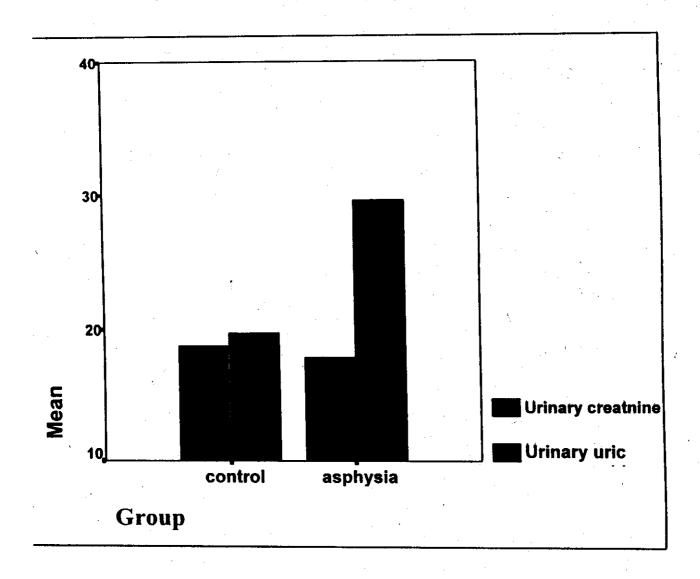


Fig. (5) mean urinary uric acid/creatinine ratio in control and asphyxia groups.

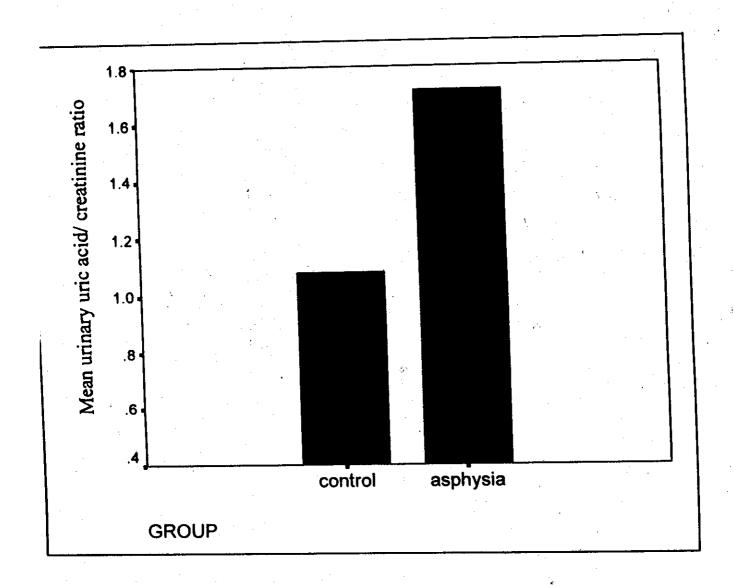


Fig. (7) mean values of pH, Po₂, Pco₂ and Hco₃ in different stages of asphyxia.

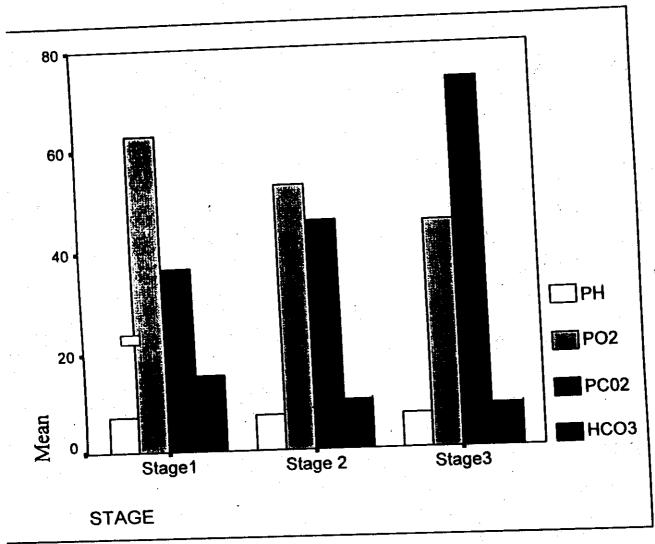
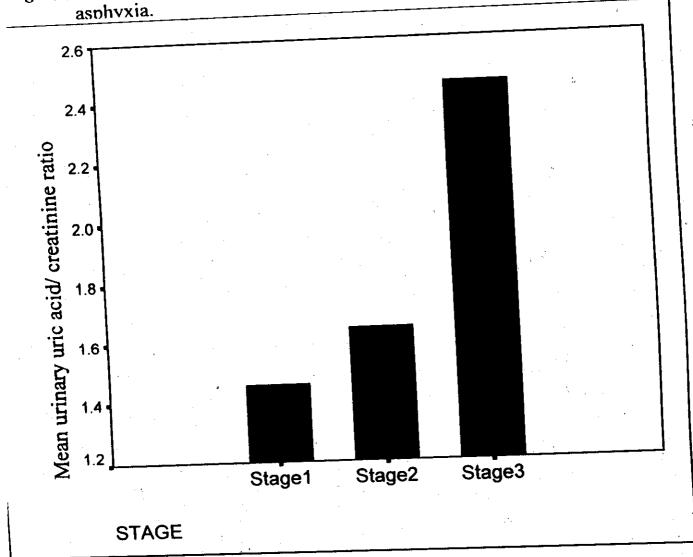
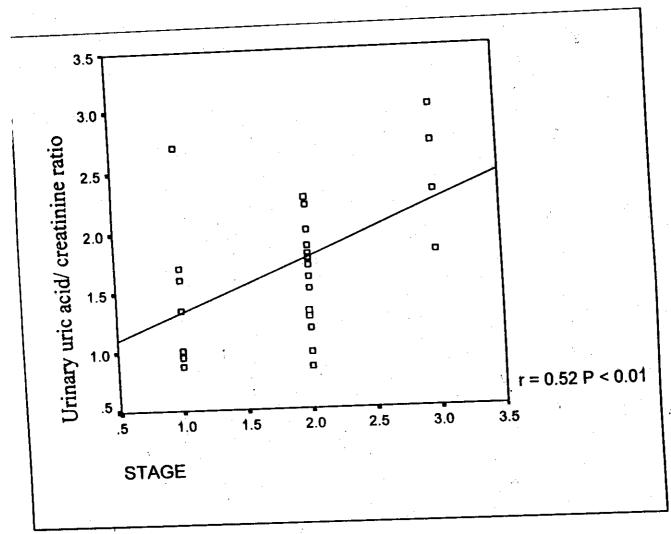




Fig. (8) Mean of urinary uric acid/creatinine ratio in different stages of asphyxia.

7ig. (9) Correlation coefficient between urinary uric acid/ creatnine ratio and stage of asphyxia.

ig. (10) correlation coefficient between urinary uric acid/creatinine ratio and asphyxia score.

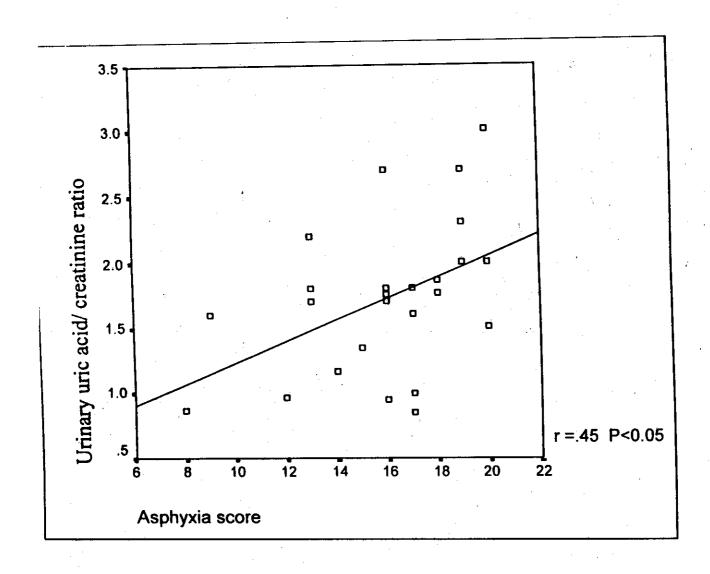
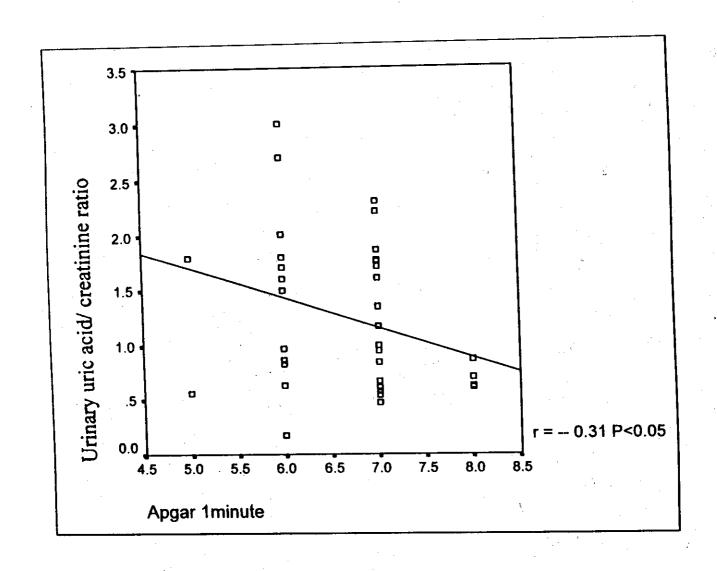



Fig. (11) correlation coefficient between urinary uric acid/ creatinine ratio and Appar score at 1 minute.

g. (12) correlation coefficient between urinary uric acid/ creatinine ratio and Appar score at 5 minutes.

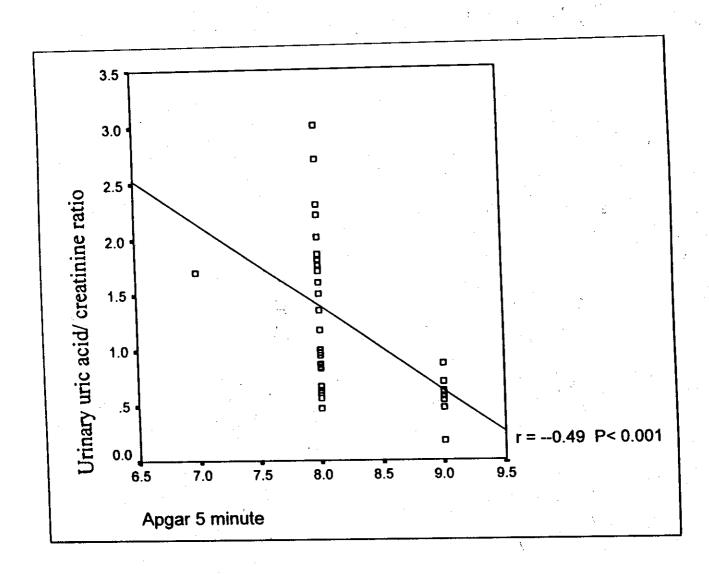


Fig. (13) correlation coefficient between urinary uric acid/ creatinine ratio and Apgar score at 10 minutes.

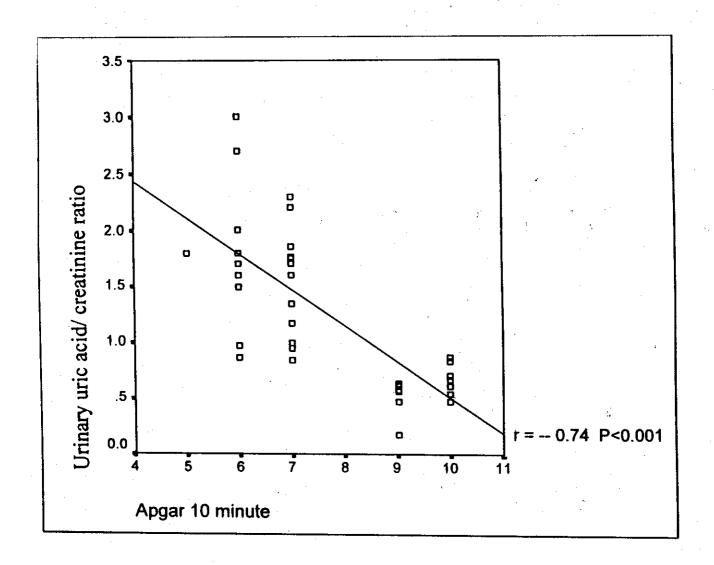


Fig. (14) correlation coefficient between urinary uric acid/ creatinine ratio and pH.

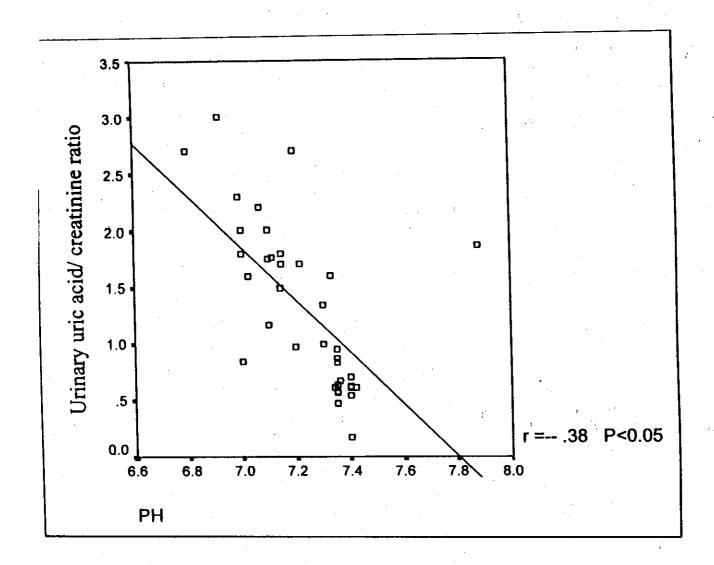


Fig. (15) correlation coefficient between urinary uric acid/ creatinine ratio and Po₂.

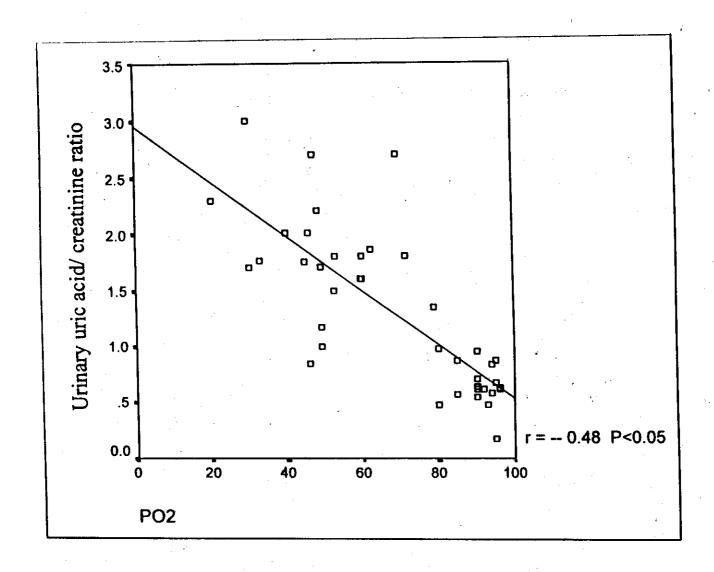
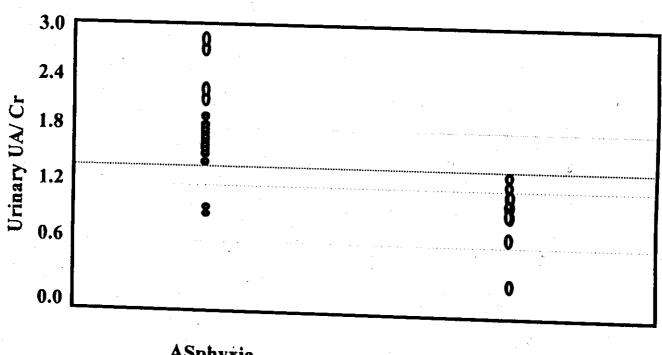



Fig. (16): Urinary UA/Cr in asphyxia and control groups

ASphyxia

Control

Group