RESULTS

The present study covered 33 patients, 19 males and 14 females, and as for sex incidence, the males constitute 57.6% and the females constitute 42.4%.. The males predominate over females.

- Table (1) shows the age incidence and the mean age of patients. The reported cases were divided into 3 age groups:
- Group I: Their ages were less than 5 years, representing 42.4% of all patients.
- Group II: Their ages ranged from 5 to 10 years, representing 39.4% of all patients.
- Group III: Their ages were more than 10 years, representing 18.2% of all patients.

The mean age was 6.1 ± 3.6 for the diseased patients.

Table 2 shows the seasonal variation in PSAGN. The disease had one peak incidence in spring and another peak incidence in winter. There were only two patients in summer representing 6.1% of all patients, while there was no any affected cases in autumn.

Table 1. Age incidence of patients.

	Acute glome:	rulonephritis
Age	No	8
<pre>5 years</pre>	14	42.4
< 10 years	13	39.4
> 10 years	6	18.2

Table 2. Seasonal variations in acute glomerulonephritis.

	Acute glomerul	onephritis
Season	No	*
Winter	18	54.5
Spring	13	39.4
Summer	2	6.1
Autumn	0	0.0

. -

Table 3 shows the incidence of group A β hemolytic streptococci isolated from throat swabs taken from patients and identified by both streptex kits and by using bacitracin sensitivity disks.

All the seven beta-hemolytic isolates were identified by streptex kits, while 6 strains out of the seven beta-hemolytic isolates were sensitive to bacitracin disks. Bcitracin sensitivity disks showed one negative result in APSGN, while streptex test showed no negative result.

Table 3. Comparison of streptex and bacitracin test in identification of group A beta hemolytic streptococci in throat swabs taken from cases.

Techniques used	group beta-hemo	Acute glomeronephritis group beta-hemolytic streptococci (7 cases)					
	No. of group A identified	8					
Streptex kits	7	100					
Bacitracin test	6	85.7					

Table 4 shows the results of antistreptolysin 0 titre in cases of PSAGN from which beta-hemolytic streptococci were isolated and cases without isolates by latex method.

The comparative study between the two groups shows elevation of A.S.O. titre above normal of both the two groups, however there is more elevation of the A.S.O titre with the group having beta-hemolytic streptococci isolates

The mean (x) antistreptolysin 0 titre and their corresponding standard deviation (S.D) of cases with isolated and non isolated streptococci are 742.86 ± 97.59 and 384.62 ± 61.27 respectively.

Table 4. Comparative study antistreptolysin 0 titre in studied groups using latex method.

ASO Titre	Cases from beta-hemol streptococ isolated (ytic ci were	Cases from which no beta-hemolytic strepto- cocci were isolated (26 cases)				
	No.	8	No	%			
<200	0.0	0.0	0.0	0.0			
200	0.0	0.0	0.0	0.0			
300	0.0	0.0	6.0	18.18			
400	0.0	0.0	19.0	57.58			
600	2.0	6.06	1.0	3.03			
800	5.0	15.15	0.0	0.0			
Total	7.0	100.0	26.0	100.0			
Mean(X)	742.86		384.62				
S.D±	97.59		61.27				

Upper limit of normal is $\langle 200 \text{ IU}.$

Table 5 shows the HLA-Haplotypes of the patients. Statistical comparison between the frequencies of the HLA-A, B and DR antigens among the patients and those of normal controls given by Hafez et al. (1986) and of individuals taken up from the same locality. Some antigens are blank either due to the unavailable specificity of the antisera or the homozygosity. Fisher exact test which is an exact test for small numbers, was used to determine the significance of difference between the frequencies. Since 30 antigens have been used, the level of significance was calcualted to be at 0.0016. Furthermore the relative risk (RR) which determines how many times those individuals having the antigen are more susceptible compared to those laking it. Moreover, the strength of association between the antigen and the genetic control of the disease has been evaluated by calculating the etiologic fraction, which indicates the proportion of the responsibility of the HLA-antigen in the development of the disease.

Table 5. The HLA-haplotypes of the patients.

Case no.			HLA-hapl	.otypes		
1	A2	A10	, B8	B2 ,	DR3	DR_
2	A1	AW19	, B5	B18 ,	DR4	DR_
3	A9	A28	B14	В,	DR5	DR_
4	A2	A11	, B8	В ,	DR3	DR
5	A1	A3	, B8	B21 ,	DR7	DR3
6	A2	A	, B15	B37 ,	DR1	DR4
7	A1	A11	, B8	В,	DR3	DR -
8	A1	Α9	, B8	B12 ,	DR7	DR3
9	A2	A10	, B5	B22 ,	DR3	DR5
10	A1	AW19	, B16	B27 ,	DR1	DR_
11	A2	A	, B8	B40 ,	2274	DR -
12	A9	A29	, B14	B21 ,	DD3	DR3
13	A2	A	, B12	B22 ,	DD 4	DR5
14	A1	AW19	, B5	в ,	DR1	DR -
15	A2	A28	, B16	B <u>1</u> 8 ,	DR	
16	A3	A11	, B17	в ,	כפת	DR
17	A1	A9	, B5	В ,	DR4	DR3
18	A2	A29	, B14	B37 ,	כפת	DR3
19	A10	A28	, B8	B12 ,	DR4	DR
20	A2	A9	, B8	B14 ,	DR5	DR -
21	A1	A10	, B5	B21 ,	DR3	DR T
22	A3	A9	, B14	B37 .	"םת	
23	A2	A_	, B15	B_ ,	1 פת	DR _
24	A1	A	, B5	В,	DD7	DR _
25	A2	A28	, B8	В,	כפת	DR -
26	A11	A29	, B8	B14 ,	DR4	DR T
27	A1	A	, B8	B40 ,	DD 7	DR -
28	A2	A28	, B5		DD4	DR -
29	A2	A_	, B8	B_ , B_ ,	מת מ	DR -
30	A9	A	, B5	В ,	DR2	DR5
31	A2	A -	, B12	B14 ,	DR -	
32	A1	A10	, B8	Β_ ,	DR3	DR
33	A2	A	, B8	В .	DR1	DR -

Tables 6,7,8 show the number of patients, antigen frequency and gene frequency for each allele of the HLA, A,B and DR.

Statistical comparison has been done between the frequencies of the antigens among patients and controls taken up from the same area (Hafez and El-Shennawy, 1986). The level of significance was decided according to the number of the antigens used which is 30, thus the probability should be less than 0.0016.

Table 6. HLA-A antigens frequencies and genes frequencies among patients and controls.

HLA-A	ar	ontrol ntigens n=380)		Patients (n=33)				
antigens	No.	Antigen frequency	Gene frequency	No.	Antigen frequency %	Gene frequency		
A1	76	20	0.1056	10	30.3	0.1625		
A2	112	29.5	0.1586	15	45.5	0.2614		
A3	31	8.1	0.0413	3	9.1	0.0465		
A9	34	9.2	0.0471	8	24.2	0.1292		
A10	54	14.2	0.0737	5	15.1	0.0788		
A11	49	12.8	0.0661	4	12.1	0.0152		
AW19	34	8.9	0.0455	3	9.1	0.0465		
A28	31	8.1	0.0413	5	15.1	0.0788		
A29	24	6.3	0.0320	3	9.1	0.0465		

Table 7. HLA-B antigens frequencies and genes frequencies among patients and controls.

HLA-B	ar	ontrol ntigens n=380)	Patients (n=33)					
antigens	No.	Antigen frequency	Gene frequency	No.	Antigen frequency	Gene frequency		
B5	67	17.8	0.093	8	24.24	0.1295		
В7	25	6.5	0.034					
B8	25	6.5	0.034	14	42.42	0.2411		
B12	78	20.5	0.109	5	15.15	0.0788		
B13	12	3.1	0.016					
B14	28	4.3	0.038	7	21.21	0.1123		
B15	19	5	0.026	2	6.06	0.0307		
B16	12	3.1	0.016	2	6.06	0.0307		
B17	19	5	0.026	1	3.03	0.0788		
B18	20	5.2	0.027	2	6.06	0.0307		
B21	21	5.5	0.028	3	9.09	0.0465		
B22	20	5.2	0.027	2	6.06	0.0307		
B27	18	4.7	0.024	1	3.03	0.0152		
B37	16	4.2	0.022	3	9.09	0.0465		
B40	12	3.1	0.016	2	6.06	0.0307		

Table 8. HLA-DR antigens frequencies and genes frequencies among patients and controls.

HLA-DR antigens	i	Control antigens n=380)	,	Patients (n=33)					
	No.	Antigen frequency	Gene frequency	No.	Antigen frequency	Gene frequency			
DR1	18	9.2	0.048	6	18.1818	0.0954			
DR2	40	20.6	0.109	3	9.0909	0.0465			
DR3	29	14.9	0.078	9	27.2727	0.1471			
DR4	31	20.8	0.111	8	24.2424	0.12925			
DR5	12	6.1	0.031	5	15.1515	0.0788			
DR7	19	9.7	0.050	7	9.0909	0.0465			

Table 9 presents the HLA-A antigens frequencies among the patients and normal controls. Also it shows HLA-A gene frequency, fisher exact, relative risk, and etiologic freaction. Statistical analysis revealed insignificant difference in any of the antigens. The relative risks are insignificant as revealed from the total chisquare. Also the etiologic fractions are low ranging from 0.0022 to 0.24.

Table 9. Statistical comparison between the HLA-A antigens frequencies among patents and controls.

HLA-A	aı	ontrol ntigens n=380)			Patients (n=33)		Fisher* exact	RR	S
antigens	No. Antigen	Gene frequency	No.	Antigen frequency	Gene frequency				
 \1	76	20	0.1056	10	30.3	0.1625	0.1762	1.7	0.1287
 \ 2	112	29. 5	0.1586	15	45.5	0.2614	0.986	3.3	0.2253
43	31	8.1	0.0413	3	9.1	0.0465	0.1248	1.1	0.24
A9	34	9.2	0.0471	8	24.2	0.1292	0.0062	3.2	0.163
A 10	54	14.2	0.0737	5	15.1	0.0788	0.2321	1.1	0.012
A11	49	12.8	0.0661	4	12.1	0.0152	0.2482	0.9	0.008
AW19	34	8.9	0.0455	3	9.1	0.0465	0.2048	1.1	0.002
A28	31	8.1	0.0413	5	15.1	0.0788	0.1269	1.7	0.076
A29	24	6.3	0.0320	3	9.1	0.0465	0.2314	1.5	0.029

^{*} Corrected level of significance is 0.0016

(Etiologic fractions are low ranging from 0.0022 to 0.24)

Statistical analysis revelaed insignificant difference in any of the antigens.

RR = Relative risk

S = Etiologic fraction

Table 10 illustrates the HLA-B antigens frequencies among patients and normal controls. Statistical analysis revealed that the only significant difference is only between the frequencies of HLA-B8. The frequency of HLA-B8 in the patients (14/33 = 42%) is significantly high compared to normal controls (25/380 = 6.5%). Fisher exact is 0.3×10^{-5} and RR = 10.6. Furthermore, the contribution of the antigen as measured by the etiologic fraction = 0.684 which is considered high. Using the total (multiple) X^2 for testing the significance of the relative risk, it is found significantly increased Wy² = 34.03 : P<0.001. (table 12)

Table 10. Statistical comparison between the HLA-B antigens frequencies among patients and controls.

HLA-B antigens	Control antigens (n=380)			_ ·-	Patients (n=33)	-	Fisher* exact	RR	S
_	No.	Antigen frequency	Gene frequency	No.	Antigen frequency	Gene frequency			
B5	67	17.8	0.093	8	24.24	0.1295	0.0989	1.47	0.0786
В7	25	6.5	0.034				_		
B8	25	6. 5	0.034	14	42.42	0.2411	0.3×10^{-5}	10.6	0.684
B12	78	20.5	0.109	5	15.15	0.0788	0.2762	0.7	-0.068
B13	12	3.1	0.016						
B14	28	4.3	0.038	7	21.21	0.1123	0.323	0.9	-0.386
B15	19	5	0.026	2	6.06	0.0307	0.2122	1.2	0.585
B16	12	3.1	0.016	2	6.06	0.0307	0.1964	2.0	0.593
B17	19	5	0.026	1	3.03	0.0788	0.4266	0.58	-0.021
B18	20	5.2	0.027	2	6.06	0.0307	0.2148	1.2	0.008
B21	21	5.5	0.028	3	9.09	0.0465	0.1347	1.8	0.037
B22	20	5.2	0.027	2	6.06	0.0307	0.1994	1.2	0.008
B27	18	4.7	0.024	1	3.03	0.0152	0.4891	0.6	-0.018
B37	16	4.2	0.022	3	9.09	0.0465	0.0989	2.3	0.05
B40	12	3.1	0.016	2	6.06	0.0307	0.1236	2.1	0.029

Statistical analysis revelaed that significant difference is only between the frequencies of HLA-B8.

Table 11 presents the frequencies of HLA-DR antigens among patients and controls. Statistical analysis revealed that the only significant difference is that between the frequencies of HLA-DR3. The DR3-antigen frequency in the patients (9/33 = 27.3%) compared to that of control (29/380 = 14.9). Chi-square = 0.2×10^{-4} ; RR = 7.14; and etiologic fraction = 0.4445. Furthermore, the test of significance of the RR(total X^2) shows significant RR; Wy² = 20; P<0.001 (table 11).

Table 11. Statistical comparison between the HLA-DR antigens frequencies among patients and controls.

HLA-DR antigens	aı	ontrol ntigens n=380)			Patients (n=33)		Fisher* exact	RR ———	S
	No.	Antigen frequency	Gene frequency	No.	Antigen frequency %	Gene frequency			
DR1	18	9.2	0.048	6	18.1818	0.0954	0.0163	2.2	0.0989
DR2	40	20.6	0.109	3	9.0909	0.0465	0.2143	0.4	-0.145
DR3	29	14.9	0.078	9	27.2727	0.1471	0.2x10 ⁻⁴	7.14	0.4445
DR4	31	20.8	0.111	8	24.2424	0.12925	0.0851	1.2	0.0429
DR5	12	6.1	0.031	5	15.1515	0.0788	0.0382	2.8	0.0969
DR7	19	9.7	0.050	7	9.0909	0.0465	0.2462	0.9	0.0079

Statistical analysis revealed that the only significant difference is that between the frequencies of HLA-DR3.

Table 12. The significance of the RR of the HLA-antigens that showed significant difference.

HLA- antigen	1/H	1/h	1/K	1/k	Y	W	w _y ²	P
в8	0.07	0.052	0.04	0.0028	_	6.06		<0.001
DR3	0.111	0.042	0.035	0.003	1.96	5.23	20.24	<0.001

where:

- H = number of controls having the antigen (25 individuals for B8, 29 individuals for DR3))
- h = numbe rof patients having the antigen (14 patients for B8, 9 patients for DR3)
- K = number of control lacking the antigen (355 individuals
 for B8, 351 for DR3))
- k = number of patients lacking the antigen (19 patients for B8, 21 patients for DR3)

The significance of the RR (total X^2) is significant; with HLA-B8 and HLA-DR3.

Table 13. Patients having and lacking B8, DR3 antigens.

Antigen	Patients with the antigen		Patents w	ithout the
	No.	8	No.	*
В8	14	42.42	19	57.57
DR3	9	27.27	24	72.73

Table 14 shows the linkage studies between HLA-B8 and DR3. The Δ -value which indicates the genetic association revealed weak negative linkage disequilibrium. The haplotype frequency indicates a biological association.

Table 14. Linkage studies between HLA-B8 and DR3.

Δ -value (deviation):

$$= \sqrt{\frac{d}{N}} - \sqrt{\frac{(b+d)(c+d)}{N^2}}$$

$$= \sqrt{\frac{24}{66}} - \sqrt{\frac{(19+24)(9+24)}{(66)^2}}$$

$$= 0.603 - 0.609$$

$$= -0.006$$

This indicates weak negative linkage disequilibrium. Thus Haplotype frequency:

 $h = \Delta + (Gene frequency B8 x Gene frequency DR3)$ = -0.006 + (0.2411 x 0.1471) = 0.0294

⁻ The Δ -value as an index of genetic association revealed weak negative linkage disequilibrium.

⁻ The haplotype frequency indicates a biological association.

Table 15 presents the individual data, mean and $\pm SD$ of IgG, IgM, IgA, C3, C4, CIC and CRP.

Table 16 illustrates the mean and $\pm SD$ of the IgA, IgG, IgM, C3 and C4 amongst the patients and controls. The levels of IgG and C3 were significantly lower in the patients than of controls (P<0.05). On the other hand the levels of IgA and IgM were significantly high than those of controls (P<0.05). Furthermore, there was no significant difference between the levels of C4 (P>0.05).

Table 15. Individual data for studied cases.

	800-1800	60-280	90-450	50-120	20-50	up to	1.5 mg/dL
No	IgG	IgM	IgA	C3	C4	CIC	CRP
1	1121.6	129.0	77.9	41.6	31.6	6.55	6.24
2	108.6	517.4	127.5	128.5	34.37		7.2
3	500.0	279.9	39.8	103.3	31.22	7.09	5.76
4	674.1	395.9	20.8	36.4	29.12	2.00	5.76
5	803.0	58.07	5.0	6.6	48.36	4.18	5.28
6	515.2	1748.7	292.7	138.4	52.00	5.35	4.8
7	162.4	221.6	202.9	39.9	23.14		50.76
8	192.8	821.25	308.8	50.3	31.40		6.72
9	165.2	393.79	180.0	277.9	33.28		5.76
10	117.52	521.56	284.9	137.3	30.78		5.28
11	636.0	55.69	502.2	16.92	41.62		5.28
12	660.6	417.1	504.9	43.2	30.91		50.28
13	4116.0	39.69	121.6	51.3	24.85		6.76
14	10.4	403.3	141.5	135.9	31.64		4.8
15	16.24	235.6	26.15	105.1	28.41		4.6
16	1821.6	79.5	89.5	27.53	32.83		6.24
17	150.8	162.0	267.2	56.6	37.44		5.28
18	257.5	108.5	89.2	172.0	40.35		4.8
19	291.0	99.6	15.6	43.0	29.17		5.76
20	177.2	86.1	148.5	40.8	19.78		4.32
21	150.4	64.1	263.1	58.8	28.75		3.84
22	689.4	164.6	394.1	133.0	37.29		4.32
23	153.6	47.5	72.5	133.7	26.62		5.76
24	284.0	146.8	379.9	27.79	51.89		4.32
25	269.0	298.3	299.1	57.3	34.66		3.84
26	132.4	76.8	362.8	56. 9	25.92		4.32
27	154.4	215.2	186.3	110.2	27.74		7.2
28	155.0	56.1	296.9	50.1	31.64		5.76
29	539.2	27.3	411.2	36.0	35.51		5.28
30	1691.2	66.66	719.0	160.2	31.25		4.23
31	194.4	92.7	21.0	104.8	34.68		3.84
32	241.0	208.0	319.0	32.0	24.54		7.68
33	1560.0	243.0	190.0	96.0	24.18	2.61	4.8
Mea	n 955.67	301.348	199.478	51.838	32.65	5.26	4.987

Table 16. Mean values ±S.D. of IgA, IgG, IgG, IgM, C3 & C4 of the patients and controls and the normal range of the control (mean ±2 SD).

Group	IgA	IgG	IgM	C3	C4
Patients				**	
Mean	199.4*	955.6**	301.3*	51.838	32.6
±SD	52.6	116.2	84.7	38.8	6.9
Controls					
Mean	154.0	1489.6	164.2	142.7	33.2
±SD	7.8	117.6	17.3	11.3	5.4
Normal range	138.4-	1254.4-	129.6~	120.1-	22.4-
(Mean±2 SD)	169.6	1724.8	198.2	165.3	44.0

^{*} Significantly high compared to controls (P<0.05)

^{**} Significantly low compared to controls (P<0.05).

Table 17 shows the correlation between IgG level and HLA- haplotypes of the patients. There was a significant aggregation of the low IgG among those having B8, DR3 and B8/DR3.

Table 18 and 19 show insignificant correlation between the levels of IgM and IgA and HLA-haplotypes.

Table 17. Correlation between IgG level and the HLA- haplotype of the patients.

	I C	Normal IgG	
HLA	Low IgG	HOT MAT 190	
B8/X	7	1	
DR3/X	5	1	
B8/DR3	5	1	
X/X	11	2	

X : (DR3(-)

 \bar{X} : (B8)(-)

Table 18. Correlation between IgM level and HLA-haplotype of the patients.

HLA	Low IgM	Normal IgM or high
B8/X	3	5
DR3/X	3	3
B8/DR3	2	4
x/x ⁻	4	9

X : (DR3(-)

X : (B8)(-)

P>0.05

Insignificant correlation between the levels of IgM and HLA-haplotypes.

Table 19. Correlation between IgA level and HLA-haplotype of the patients.

HLA	Low IgA	Normal IgA or high		
B8/X	1	7		
DR3/X	2	4		
B8/DR3	3	3		
x/x ⁻	4	9		

X : (DR3(-)

X : (B8)(-)

P>0.05

Insignificant correlation between the levels of IgA and HLA-haplotypes.