RESULTS

This study included 60 patients with essential hypertension 32 females and 28 males, their age ranged 43:59 years (Mean 52 ± 4 years). A control group included 20 of age and sex matched healthy subjects was also included in the study.

As shown in (Table I) there is no statistically significant difference between both studied groups (patients and control) as regard clinical data.

Ambulatory blood pressure readings showed statistically significant difference between both groups (patients and control) in day time, night time and average 24-h blood pressure (P< 0.01) (Tables 2,3,4) and Figures (1,2,3).

Both groups (patients and control) were studied as regard the presence of dippers there was statistically significant difference between both groups. The prevalence of dippers among control group (80%) was more than that among patients (56.6%) (Table 5) and Figure (4).

Hyperdippers (subjects whose night time blood pressure was reduced by $\geq 20\%$ in comparison to their day time blood pressure) were not present in both groups (patients and control).

As shown in (Table 6) there were statistically significant difference in echocardiographic parameters between both groups except "LVEDD".

Table (1): Comparative analysis of clinical parameters in hypertensives versus normotensives.

Parameter	Patients (n =60)	Control (n = 20)	t	P	Sig.
	x ± SD	x ± SD			
Age (years)	52.0 ± 4.0	50.3 ± 4.5	1.614	> 0 .05	NS
Weight (kg)	80.5 ± 9.6	78.6 ± 7.3	0.810	>0.05	NS
Height (cm)	168.5 ± 8.6	164.6 ± 6.5	1.863	> 0 .05	NS
BSA (M²)	1.9 ± 1.13	1.8 ± 0.1	1.349	>0.05	NS
BMI (kg/M²)	28.5 ± 3.9	29.2 ± 3.8	0.676	>0.05	NS

X = mean

SD = standard deviation

BSA = body surface area

NS = non significant

BMI = Body mass index

Table (2): Comparative analysis of ambulatory blood pressure readings in hypertensives versus normotensives as regards day time.

SD 2 ± 15.1 4 ± 7.8 3 ± 15.5	\pm \$\pm SD 138.2 \pm 12.8 89.5 \pm 5.0 105.7 \pm 8.9	11.125 7.464 5.910	< 0.01 < 0.01 < 0.01	HS HS HS
4 ± 7.8 3 ± 15.5	89.5 ± 5.0 105.7 ± 8.9	7.464 5.910	< 0.01	HS
4 ± 7.8 3 ± 15.5	89.5 ± 5.0 105.7 ± 8.9	7.464 5.910	< 0.01	HS
B ± 15.5	105.7 ± 8.9	5.910	""	
			< 0.01	HS
) + 16.2	1223+47			-
) + 16.2	1223 + 47	1	1	
	122.J I 4.7	12.147	< 0.01	HS
9 ± 5.7	80.2 ± 5.4	10.808	< 0.01	HS
3 ± 12.6	94.6 ± 3.7	7.800	< 0.01	нs
5 ± 18.7	121.9 ± 3.7	9.871	< 0.01	HS
5 ± 4.4	78.3 ± 5.0	13.085	< 0.01	НS
4 ± 12.2	92.4 ± 2.8	7.567	< 0.01	HS
	5 ± 4.4	5 ± 4.4 78.3 ± 5.0	5 ± 4.4 78.3 ± 5.0 13.085	5 ± 4.4 78.3 ± 5.0 13.085 < 0.01

TAG (1) = Time period starting from arising time \rightarrow 10 AM.

TAG (2) = Time period starting from $10 \text{ AM} \rightarrow 7 \text{ PM}$

TAG (3) = Time period starting from $7 \text{ PM} \rightarrow \text{sleep time}$

HS = Highly significant

180 160 140 120 Mean value (X) 100 ☑ Patients ■ Control 60 60 40 20 **Systolic** Diastolic Mean

Fig. (1): Ambulatory (BP) in hypertensives versus normotensives (in day time).

Table (3): Comparative analysis of ambulatory blood pressure readings in hypertensives versus normotensives as regards (night time).

Parameter	Patients (n =60)	Control (n = 20)	t	P	Sig.
	x ± SD	x ± SD			
Night time BP:				 	
Average systolic	162.2 ± 21.4	106.2 ± 5.0	8.152	<0.01	НS
Average diastolic	89.6 ± 6.9	70.6 ± 6.2	9.119	<0.01	HS
Average mean	109.2 ± 13.5	80.5 ± 3,3	6.099	<0.01	HS

HS = Highly significant

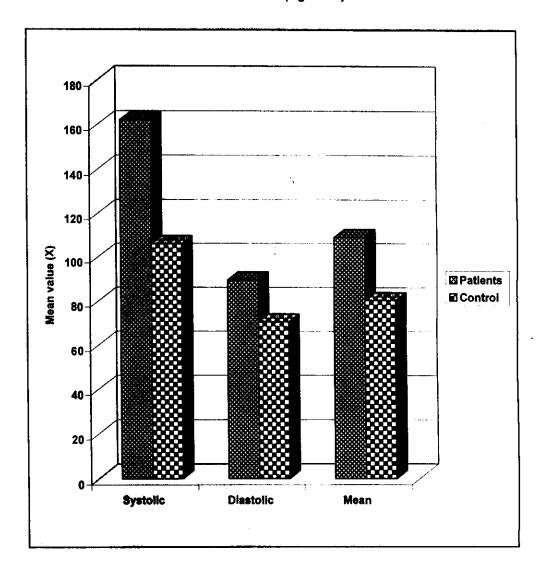


Fig. (2): Ambulatory blood pressure in hypertenstives versus nermotensives in (night time).

Table (4): Comparative analysis of ambulatory blood pressure readings in hypertensives versus normotensives as regard (average 24 h blood pressure).

Parameter	Patients (n =60) x ± SD	Control (n = 20) x ± SD	ŧ	P	Sig.
Average 24 h BP: Average systolic	165.9 ± 16.2	123.9 ± 4.1	11.434	<0.01	HS
Average diastolic	96.7 ± 5.0	80.4 ± 4.0	12.480	<0.01	нѕ
Average mean	116.0 ± 12.1	95.8 ± 3.6	7.332	<0.01	HS

HS = Highly significant.

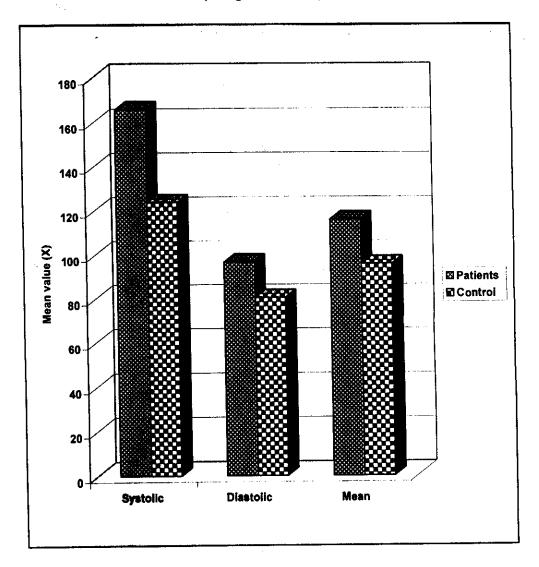


Fig. (3): Ambulatory blood pressure in hypertensives versus normotensives (through out 24 hours)

Table (5): Prevalence of dippers and non dippers among hypertensives versus normotensives.

Parameter	Patient	s (n = 60)	Contro	(n = 20)
	No.	%	No.	%
Dippers	34	56.67	16	80
Non dippers	26	43.33	4	20
Total	60	100.0	20	100.0

 $X^2 = 3.984$

P < 0.05

Fig. (4): The prevalence of dippers and non dippers among hypertensives versus normotensives.

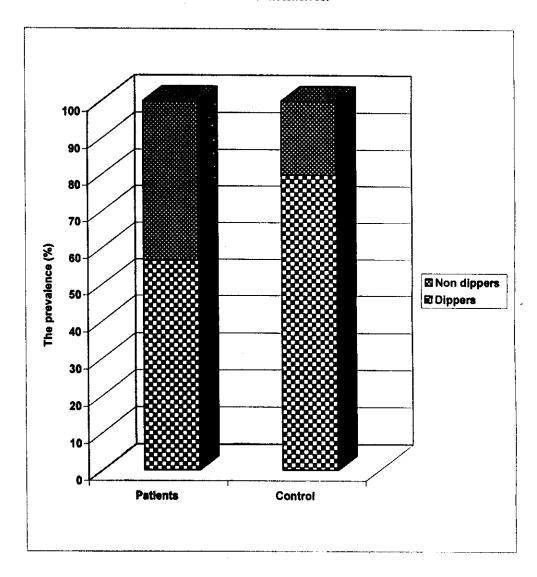


Table (6): Comparative analysis of echocardiographic parameters in hypertensives versus normotensives.

Parameter	Patients (n =60) x ± SD	Control (n = 20) x ± SD	t	P	Sig.
LVEDD (cm)	4.74 ± 0.45	4.65 ± 0.45	0.799	>0.05	NS
PWTd (cm)	1.20 ± 0.20	0.80 ± 0.10	6.599	<0.01	нѕ
SWTd (cm)	1.30 ± 0.30	0.80 ± 0.20	5.559	<0.01	нѕ
LVMI penn (g/m²)	122.4 ± 39.8	61.3 ± 14.6	6.683	<0.01	нs

NS = Non significant

HS = Highly significant

LVEDD = Left ventricular end diastolic dimension

PWTd = Posterior wall thickness in diastole

SWTd = Septal wall thickness in diastole

LVMI penn (g/m^2) = Left ventricular mass index.

When hypertensive patients were classified according to the presence or absence of echo-evident left ventricular hypertrophy there were statistically significant difference between both subgroups as regard clinical parameters except height (Table 7).

In comparison between patients with LVH and patients without LVH as regard casual blood pressure and ambulatory blood pressure readings (Tables 8, 9, 10) and Figures (5, 6, 7,8). There were no statistically significant difference between both studied groups in casual blood pressure and day time ambulatory diastolic blood pressure but there were statistically significant difference in other ambulatory blood pressure readings in day, night and average 24-h blood pressure values.

Hypertensive patients were studied as regard the presence of dippers. There was that only (10 out of 32) patients with LVH (31.25%) were found to be dippers while (24 out of 28) patients without LVH (85.71%) were found to be dippers.

Hyperdippers were not found among both hypertensive groups (with LVH, without LVH).

As shown in (Table 12) hypertensive patients were classified as regard to night fall of blood pressure into (dippers and non dippers) there was no statistically significant difference between both groups as regard age and duration of hypertension.

Table (7): Comparative analysis of clinical parameters in hypertensives with "LVH" versus hypertensives without "LVH".

Parameter	With LVH (n =32) x ± SD	Without LVH (n = 28) x ± SD	t	P	Sig.
Age (years)	55.1 ± 2.1	48.5 ± 2.5	11.137	<0.01	HS
Weight (kg)	82.8 ± 9.8	77.8 ± 8.6	2.084	<0.05	S
Height (cm)	170.03 ± 8.74	166.82 ± 8.34	1.450	>0.05	NS NS
BSA (M²)	1.92 ± 0.14	1.86 ± 0.12	1.976	<0.05	s
BMI (kg/M²)	29.7 ± 4.1	28.2 ± 3.8	1.985	<0.05	S

LVH = Left ventricular hypertrophy

BSA = Body surface area

BMI = Body mass index

HS = Highly significant

S = Significant

NS = Non significant

Table (8): Comparative analysis of casual and average 24-h ambulatory blood pressure readings in hypertensives with LVH versus hypertensives without LVH.

Parameter	With LVH (n =32)	Without LVH (n=28)	t	P	Sig.
	x ± SD	x ± SD			
Casual BP:					
Systolic	168.59 ± 10.57	169.82 ± 11.26	0.436	>0.05	NS
Diastolic	105.16 ± 6.57	103.0 ± 6.39	1.054	>0.05	NS
Меап	124.7 ± 7.7	122.3 ± 8.1	1.033	>0.05	NS
Average 24-h (ABPM):					
Average systolic	172.5 ± 14.7	150.3 ± 14.5	3.761	<0.05	s
Average diastolic	105.1 ± 3.4	92.0 ± 5.9	2.541	<0.05	s
Average mean	120.2 ± 10.1	101.3 ± 12.6	3.039	<0.05	s

ABPM = Ambulatory blood pressure monitoring.

NS = Non significant

S = Significant

LVH = Left ventricular hypertrophy

Fig. (5): Causal blood pressure readings in hypertensive patients (with LVH and without LVH)

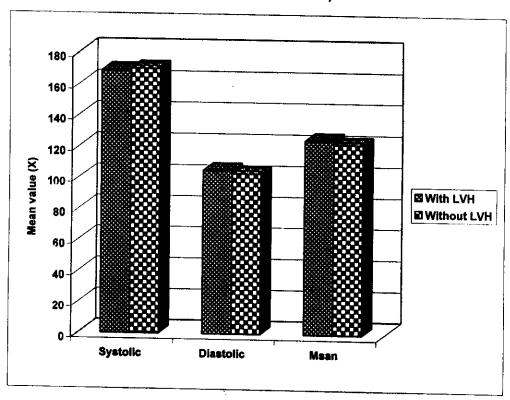


Fig. (6): Ambulatory blood pressure readings (in 24-h) in hypertensive patients (with LVH and without LVH)

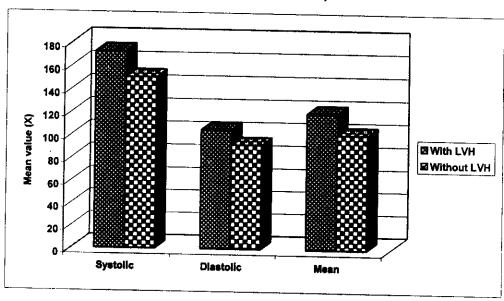
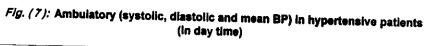


Table (9): Comparative analysis of ambulatory blood pressure readings (day time) in hypertensives with LVH versus hypertensives without LVH.

With LVH (n =32)	Without LVH (n = 28)	t	P	Sig.
x ± 8D	x ± SD			·
191.6 ± 17.2	168.2 ± 10.7	2.505	<0.05	S
106.63 ± 8.4	i03 ± 7.12	0.128	>0.05	NS
138.4 ± 13.9	i i 6.8 ± 16.6	1.968	<0.05	S
172.4 ± 15.0	160.9 ± 15.5	2.915	<0.05	s
107.0 ± 4.8	94.8 ± 6.5	1.487	>0.05	NS
120.4 ± 11.1	112.6 ± 12.8	2.545	<0.05	s
170.3 ± 17.6	i55.8 ± 17.0	3.223	<0.05	s
105.0 ± 3.3	93.1 ± 3.7	1.954	>0.05	NS
117.1 ± 11.4	109.2 ± 12.0	2.586	<0.05	s
	191.6 ± 17.2 106.63 ± 8.4 138.4 ± 13.9 172.4 ± 15.0 107.0 ± 4.8 120.4 ± 11.1 170.3 ± 17.6 105.0 ± 3.3	$x \pm D $x \pm D 191.6 ± 17.2 168.2 ± 10.7 106.63 ± 8.4 103 ± 7.12 138.4 ± 13.9 16.8 ± 16.6 172.4 ± 15.0 160.9 ± 15.5 107.0 ± 4.8 94.8 ± 6.5 120.4 ± 11.1 112.6 ± 12.8 170.3 ± 17.6 155.8 ± 17.0 105.0 ± 3.3 93.1 ± 3.7	$\frac{\pi}{x} \pm \$D$ $\frac{\pi}{x} \pm \$D$ 191.6 ± 17.2 168.2 ± 10.7 2.505 106.63 ± 8.4 103 ± 7.12 0.128 138.4 ± 13.9 116.8 ± 16.6 1.968 172.4 ± 15.0 160.9 ± 15.5 2.915 107.0 ± 4.8 94.8 ± 6.5 1.487 120.4 ± 11.1 112.6 ± 12.8 2.545 170.3 ± 17.6 155.8 ± 17.0 3.223 105.0 ± 3.3 93.1 ± 3.7 1.954	\bar{x} \$\frac{1}{3}\pm \frac{1}{3}\pm \frac{1}\pm \frac{1}{3}\pm \frac{1}{3}\pm \frac{1}{3}\pm \frac{1}{3}\pm

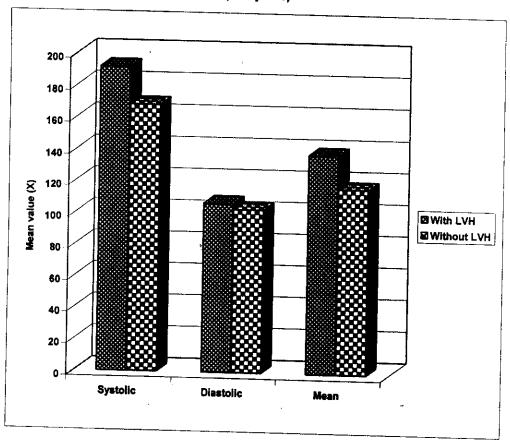

TAG (1) = Time period starting from arising time \rightarrow 10 AM

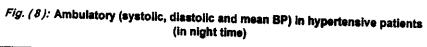
TAG (2) = Time period starting from $10 \text{ AM} \rightarrow 7 \text{ PM}$

TAG (3) = Time period starting from $7 \text{ PM} \rightarrow \text{sleep time}$

S = Significant

NS = Non-significant




Table (10): Comparative analysis of ambulatory blood pressure readings
(night time) in hypertensives with LVH versus
hypertensives without LVH.

Parameter	With LVH (n =32)	Without LVH (n = 28)	t	P	Sig.
	x ± SD	x ± SD]	
Night time BP:	-				
Average systolic	169.9 ± 18.0	144.3 ± 19.4	4.480	<0.01	HS
Average diastolic	102.9 ± 3.9	85.8 ± 7.8	4.510	<0.01	HS
Average mean	124.9 ± 11.0	102.5 ± 13.2	3.964	<0.05	S

Night time = actual sleep period starting from sleep time→ arising time.

HS = Highly significant

S = Significant

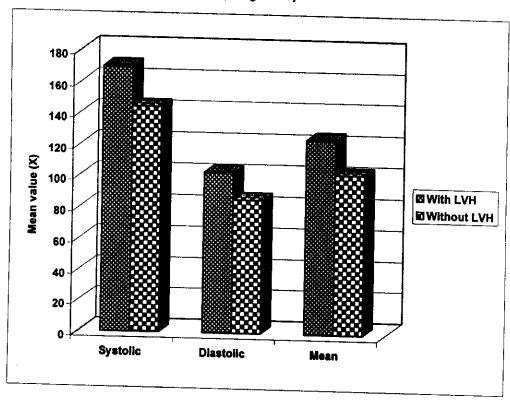
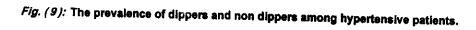


Table (11): Prevalence of dippers and non dippers among hypertensives with LVH versus hypertensives without LVH.


Parameter	With	With LVH With		ut LVH	Total	
	No.	%	No.	%	No.	%
Dippers	10	31.25	24	85.71	34	56.67
Non dippers	22	68.75	4	14.29	26	43.33
Total	32	100.0	28	100.0	60	100.0

 $X^2 = 18.040$

P < 0.05

LVH

= Left ventricular hypertrophy.

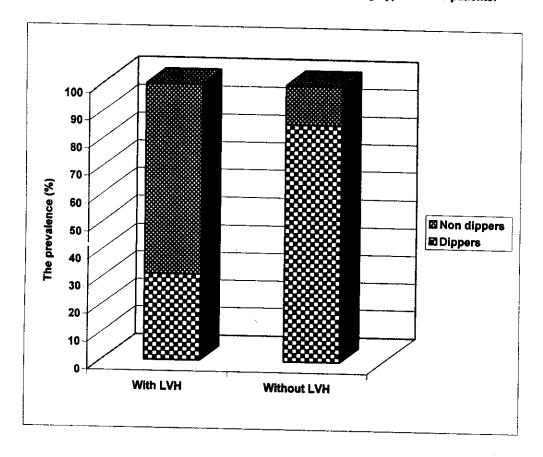


Table (12): Comparison between dippers and non dippers among hypertensive patients as regard age.

Parameter	Dippers (n = 34) x ± SD	Non dippers (n =26) x ± SD	t	P	Sig.
Age (in years)	51.8 ± 4.0	52.2 ± 2.9	1.66	>0.05	NS

NS = Non significant

As shown in (Table 13) there was no significant correlation between left ventricular mass index (LVMI) and height while LVMI showed a significant correlation with other parameters (P < 0.05).

As shown in (Table 14) and Figures (10, 11, 12, 13) there was significant correlation between (LVMI) and mean of ambulatory blood pressure readings in different times (day time, night time and average 24 h BP) "P < 0.05". But there was no significant correlation between left ventricular mass index (LVMI) and casual blood pressure readings.

Table (13): Correlation between LVMI and clinical parameters.

Parameters	LV	LVMI	
	r	P	3
Age (years)	+ 0.636	<0.05	S
Height (cm)	+ 0.129	>0.05	NS
Weight (kg)	+ 0.252	<0.05	S
BSA	+ 0.219	<0.05	S
ВМІ	+ 0.263	<0.05	S

LVMI = Left ventricular mass index

BSA = Body surface area

BMI = Body mass index

S = Significant

NS = Non significant

Table (14): Correlation between LVMI and causal & ambulatory blood pressure readings.

Parameters	LVMI		Sig.
	r	P	_
Mean causal BP readings:	+ 0.201	>0.05	NS
Mean ABPM readings:			
A- Day time:			
TAG (1)	+ 0.352	<0.05	S
TAG (2)	+ 0.537	<0.05	s
TAG (3)	+ 0.548	<0.05	S
B- Sleep period:	+ 0.569	<0.01	HS
C- Average 24-h BP:	+ 0.533	<0.05	S
D- 24-h BP variations	+ 0.290	<0.05	S

LVMI = Left ventricular mass index

TAG (1) = Time period starting from arising time \rightarrow 10 AM

TAG (2) = Time period starting from $10 \text{ AM} \rightarrow 7 \text{ PM}$

TAG (3) = Time period starting from $7 \text{ PM} \rightarrow \text{sleep time}$

ABPM = Ambulatory blood pressure monitoring

NS = Non significant

S = Significant

HS = Highly significant

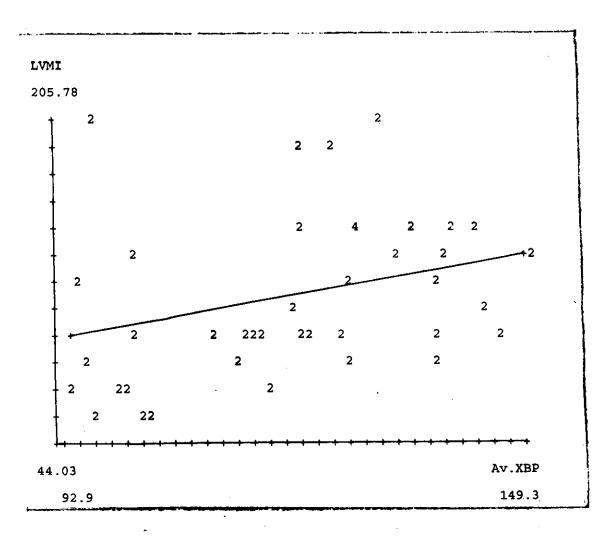


Fig. (10): Relationship between mean ambulatory blood pressure in (day time) and left ventricular mass index.

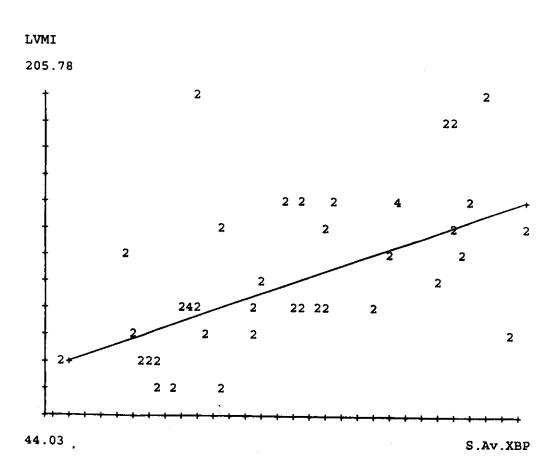


Fig. (11): Relationship between mean ambulatory blood pressure in (night time) and LVMI.

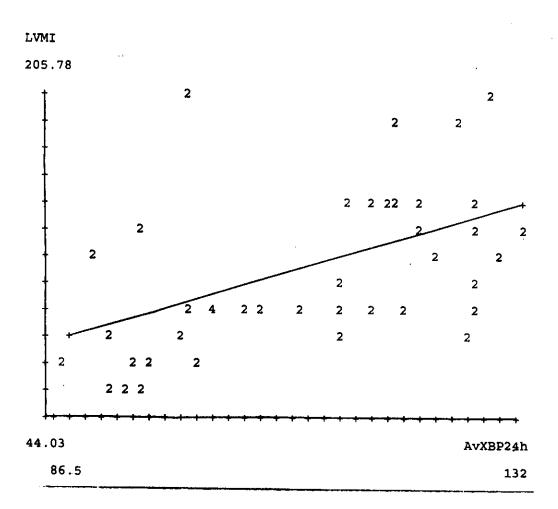


Fig. (12): Relationship between mean ambulatory blood pressure (throughout 24-h) and LVMI.

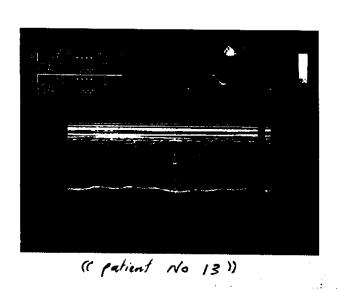


Figure (13): M-mode echocardiogram of the left ventricle at the chordal level showing concentric LVH.

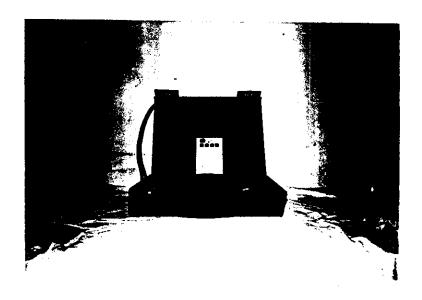


Fig. (14): Ambulatory blood pressure monitoring apparatus.

Patients No: 40

Date: 29/10/98

Date: 29/10/98					
	OXFORD				
AMBULATORY BLOOD PRESSURE REPORT RESULTS PRINTOUT					
					<u>S</u>
No.	Time	Systolic/Diastolle	Mean		
		mmHg	mmHg		
1	10.30	127/84	98		
2	11.00	121/77	92		
3	11.30	130/87	101		
4	12.00	131/82	98		
5 6	12.30	117/83	94		
	1.00	100/68	78		
7	1.30	108/67	80		
8	2.00	113/72	85		
9	2.30	119/76	90		
10	3.00	115/75	88		
11	3.30	112/78	89		
12	4.00	106/74	84		
13	4.30	100/70	80		
14	5,00	115/73	8 6		
15	5.30	110/66	80		
16	6.00	123/75	91		
17	6.30	107/78	88		
18	7.00	109/78	89		
19	7.30	105/65	78		
20	8.00	95/65	75		
21	8.30	102/75	84		
22	9.00	113/88	96		
23	9.30	125/73	90		
24	10.00	91/65	73		
25	10.30	100/68	73 78		
- 26	11.00	100/64	76		
27	11.30	93/70	70 77		
28	12.30	105/70	82		
29	1.30	106/67	82 80		
30	2.30	111/72	80 85		
31	3.30	107/77	87		
32	4.30	107/70	87 82		
33	5.30	109/77	82 87		
34	6.30	116/69	1		
35	7.30	109/85	84		
36	8.30	137/86	93		
37	9.00	135/86	103		
38	9.30	137/88	102		
	7.30	13 // 66	104		

Fig. (15): Ambulatory blood pressure monitoring of normal subject.

Patients No: 21

Date: 18/7/98

OXFORD Date: 18///98					
AMBULATORY BLOOD PRESSURE REPORT					
	RESULTS PRINTOUT				
	Sample Blood pressure				
No.	Time	Systolic/Diastolic	Mean		
	· · · · · · · · · · · · · · · · · · ·	mmHg	mmHg		
1	10.00	170/108	129		
2	10.30	169/107	128		
3	11.00	165/104	124		
4 5	11.30	171/108	129		
6	12.00	163/105	124		
	12.30	166/100	122		
7	1.00	159/103	122		
8 9	1.30	172/113	132		
10	2.00	165/109	128		
	2.30	167/107	127		
11	3. 0 0	169/108	128		
12 13	3.30	159/106	124		
13	4.00	167/110	129		
15	4.30	170/107	128		
16	5.00 5.30	173/114	134		
17	5.30 6.00	170/105	127		
18	6.30	168/108	128		
19	7. 0 0	170/103 171/109	125		
20	7.30 7.30	171/109	130		
21	8.00	168/107	130 127		
22	8.30	169/106	127		
23	9.00	171/112	132		
24	9.30	163/100	132		
25	10.00	166/103	121		
26	10.30	177/113	134		
27	11.00	168/97	121		
28	12.00	153/96	115		
29	1.00	149/90	110		
30	2.00	146/89	108		
31	3.00	139/92	108		
32	4.00	148/89	109		
33	5.00	150/94	113		
34	6.00	153/96	115		
35	7. 0 0	160/95	117		
36	8.00	166/105	125		
37	8.30	170/109	129		
38	9.00	173/108	130		
39	9.30	174/106	129		

Fig. (16): Ambulatory blood pressure monitoring of hypertensive dipper subject.

Patients No: 13

Date: 28/6/98

OXFORD				
A	MBULATORY BLOC	DD PRESSURE REPORT		
RESULTS PRINTOUT				
Sample		Blood pressure		
No.	Time	Systolic/Diastolic	Mean	
		mmHg	mmHg	
1	10.30	160/98	119	
2 3	11.00	157/96	116	
. 3	11.30	159/97	118	
4 5	12.00	153/91	112	
5	12.30	154/93	114	
6	1.00	156/94	115	
7	1.30	153/93	113	
8	2.00	160/99	119	
9	2.30	151/98	116	
10	3.00	155/95	115	
11	3.30	154/94	114	
12	4.00	160/99	119	
13	4.30	159/96	117	
14	5.00	157/97	117	
15	5.30	149/91	110	
16	6.00	148/93	111	
17	6.30	149/96	114	
18	7.00	153/95	114	
19	7.30	158/96	117	
20	8.00	149/93	117	
21	8.30	148/94	112	
22	9.00	160/99	118	
23	9.30	157/93	116	
24	10.00	149/92	111	
25	10.30	150/90	110	
26	11.00	160/99	110	
27	12.00	159/94		
28	1.00	149/93	116	
29	2.00	159/98	112	
30	3.00	160/99	118	
31	4.00		119	
32	5.00	157/96	116	
33	6.00	158/98	118	
34	7.00	153/94	114	
35	7.00 8.00	155/95	115	
36		160/97	118	
37	8.30	159/98	118	
38	9.00	153/96	115	
36	9.30	159/97	118	
77	10.00	157/97	117	

Fig. (17): Ambulatory blood pressure monitoring of hypertensive non-dipper subject.