CONTENTES

	Pag
Chapter I Maximum Principles In Orinary Differential	1
Equation	
1-1 Introduction	1
1-2 The one-dimensional Maximum Principal	1
1-3 More General Differential Inequalities	5
1-4 The Generalized Maximum Principle	6
1.5 Uniqueness Results For Initial and Boundary	10
Value Problems	
1-5-1 Initial Value Problem	10
1.5.2 Boundary Value Problem	11
1-6 Approximation In Boundary And Initial Problems	15
1.6.1 Boundary Value Problem 1.6.2 INITIAL VALUE PROBLEM	15) 19
1-7 Nonlinear Operators	22
Chapter II Maximum Principles In Elliptic Problems	26
2-1 Introduction	26
2.2 Notations And Some Basic Definitions And	26
Theorems	
2.3 Maximum Principle For elliptic Inequalities	29
2.4 More General Differential Inequalities	33
2.5 Maximum Principle of E. Hopf	34
2.6 Uniqueness Theorem For Boundary Value	38
Problems	
2.7 The Generalized Maximum Principle	41

	Pag
2.8 Approximation In Boundary Value Problems	47
2.9 The Phragmen-Lindelof Principle	51
2-10 Nonlinear operators	63
Chapter III The P. Function For Solution of $\Delta u+f(u)=0$	69
3.1 Introduction	69
3.2 The one-dimensional Problem	69
3.3 Determination of P-Functions for Solutions of $\Delta u + \beta(u) =$. 74
3-3-1 The Two-Dimensional Case	75
3-3-2 The Higher-dimensional Case	79
3-4 The Maximum Of P on D	84
3.4.1 The Two-Dimensional Case	84
3-4-2 Higher Dimensions	86
3.5 The maximum Of P at a Point Where $\Delta u = 0$	89
3.5.1 Dirichlet Boundary Conditions	90
3.5.2 Neumann Boundary Conditions	97
Chapter IV Applications	102
4-1 Torsion Problem	102
4-2 Abound For The Efficiency ratio	112