CHAPTER O

INTRODUCTION

In 1965 Zadeh [84], it is introduced the idea of a fuzzy set as an extension of classical set theory. This chapter is considerd as a background for the material inclouded in this thesis. It contains, fuzzy subsets, fuzzy supratopology, fuzzy (bi) topology, fuzzy (quasi-) proximity and dimension theory of classical bitopological spaces.

In classical set theory, an element either belong to a set or not belong to this set. If X is a set of objects, membership in a classical subset A of X is often viewed as a characteristic function 1_A from X to the set $\{0,1\}$ which is called a valuation set such that:

$$1_{A}(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

If the valuation set is the closed unit interval I = [0,1], A is called a fuzzy set. In other words, a fuzzy set can be regarded as a function from X into I. Fuzzy sets on X will be denoted by Greek litters as μ, ρ, η etc.

An ordinary subset A of X can be regarded as a fuzzy set from X into the set $\{0,1\}$ and in this case it is called crisp subset of X. Crisp subsets of X will be denoted by the capital letters A,B,C etc.

If $\mu: X \longrightarrow I$ is a fuzzy set, then $\mu(x)$ is the value of μ at $x \in X$ and it is called the degree of the membership of x in μ .

0.1. FUZZY SETS.

<u>Definition 0.1.1 [84]</u>. Let X be a set. A fuzzy subset of X is a function $\mu: X \longrightarrow I$. The fuzzy subsets \emptyset and X are the constant functions taking whole of X to 0 and 1, respectively. We denote by I^X , the class of all

fuzzy subsets in X.

Definition 0.1.2 [84]. Let μ , $\rho \in I^{X}$. Then

- (a) $\mu \subseteq \rho$ iff $\mu(x) \leq \rho(x)$, for all $x \in X$.
- (b) $\mu' = X \setminus \mu$ iff $\mu'(x) = 1 \mu(x)$, for each $x \in X$, μ' is the complement of μ .
- (c) For a collection $\{\mu_j: j \in J\}$ of fuzzy subsets of X, the union U μ and the intersection $\bigcap_{j \in J} \mu$ are fuzzy subsets of X and defined as $j \in J$ $j \in J$ follows: $(U \mu_j)(x) = \sup_{x \in X} \{\mu_j(x)\}_{j \in J}$ and $(\bigcap_{j \in J} \mu_j)(x) = \inf_{x \in X} \{\mu_j(x)\}_{j \in J}$ for each $x \in X$.

Definition 0.1.3 [20,52,68]. Let μ , $\rho \in I^X$. Then

(a) $\mu_{S\alpha} = \{x \in X : \mu(x) > \alpha\}$ is called the strong α -cut of μ , where $\alpha \in [0,1)$.

The strong 0-cut of μ is called the support of μ and is denoted by $\text{supp}(\mu)$.

- (b) $\mu_{W\alpha} = \{x \in X : \mu(x) \ge \alpha\}$ is called the weak α -cut of μ , $\alpha \in (0,1]$.
- (c) $hgt(\mu)=Sup_{x\in X} \mu(x)$ is called the height of μ .
- (d) A fuzzy singleton $\mathbf{x}_{\mathbf{t}}$ (or a fuzzy point) in X is a fuzzy set defined by :

$$x_{t}(y) = \begin{cases} t & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}$$

where the point $x \in X$ and the value $t \in (0,1]$ are respectively the support and the value of the singleton x_{\downarrow} .

(e) A fuzzy singleton $x_t \in \mu$ iff $t \le \mu(x)$.

We denote by S(X), the set of all fuzzy singletons or fuzzy points in X.

<u>Proposition 0.1.4 [68]</u>. Let $\mu, \rho, \eta \in I^X$ and $\{\mu_j : j \in J\} \subseteq I^X$. Then

(a)
$$\mu = \bigcup_{x_t \in \mu} (x_t) = \bigcup_{x_t \neq \mu} (x_{1-t}).$$

- (b) $x_t \in \bigcap_{j \in J} \mu_j$ iff $x_t \in \mu_j$ for all $j \in J$.
- (c) $x_t \in \bigcup_{j=J}^n \mu_j$ iff there exists $j \in \{1, 2, ..., n\}$ such that $x_t \in \mu_j$.
- (d) If there exists $j \in J$ such that $x_t \in \mu_j$, then $x_t \in \bigcup_{j \in J} \mu_j$.

<u>Definition 0.1.5 [69]</u>. A fuzzy set μ is said to be quasi-coincident with a fuzzy set ρ , in symbol μ q ρ , iff there exists $x \in X$ such that $\mu(x) + \rho(x) > 1$. In particular, x_t q μ iff $t + \mu(x) > 1$. If μ is not quasi-coincident with ρ then we write μ q ρ .

<u>Proposition 0.1.6 [20,69]</u>. Let $\mu, \rho, \eta \in I^X$ and $\{\mu_j : j \in J\} \subseteq I^X$. Then

- (a) $\mu \neq \rho$ implies $\mu \cap \rho \neq \emptyset$.
- (b) $\mu \bar{q} \rho \text{ iff } \mu \subseteq \rho'$.
- (c) $\mu \neq \rho$ iff there exists $x_t \in S(X)$ such that $x_t \in \mu$ and $x_t \neq \rho$.
- (d) For all x, $y \in X$, $x \neq y$ implies $x_t = \overline{q} y_r$. If $x_t = \overline{q} y_r$, then $x \neq y$ or x=y and $t + r \leq 1$.
- (e) $x_t = \bar{q} \mu \text{ iff } x_t \in \mu'$.
- (f) μ q μ'.
- (g) $\mu \subseteq \rho$ iff for all $x_t \in S(X)$, $x_t \neq \mu$ implies that $x_t \neq \rho$.
- (h) $x_t \neq 0$ μ_j iff there exists $j \in J$ such that $x_t \neq \mu_j$.
- (i) $x_t q \bigcap_{j \in J} \mu_j$ iff $x_t q \mu_j$ for all $j \in \{1, 2, ..., n\}$.
- (j) $x_t q \bigcap_{j \in J} \mu_j$ iff $x_t q \mu_j$ for all $j \in J$.

In the following denote by $\underline{\alpha}$ the constant mapping with value $\alpha \in (0,]$ and 1_A the characteristic mapping of $A \subseteq X$.

<u>Proposition 0.1.7 [52]</u>. Let μ ,, $\eta \in I^X$ and $\{\mu_j : j \in J\} \subseteq I^X$. Then

(a) The weak α -cuts form a descending chain, that is

$$0 < \alpha_1 \le \alpha_2 \le 1 \text{ implies } \mu_{W\alpha_2} \subseteq \mu_{W\alpha_1}$$

- (b) The strong α -cuts form a descending chain, that is $0 < \alpha_1 \le \alpha_2 \le 1 \text{ implies } \mu_{S\alpha_2} \le \mu_{S\alpha_4}$
- (c) Decomposition of a fuzzy set μ in terms of its strong α -cuts is $\mu = U \; \{\underline{\alpha} \; \bigcap \; 1_{\mu_{\alpha\alpha}} : \; \alpha \in [0,1)\}, \; \text{where}$

$$\underline{\alpha} \, \cap \, {}^1\!\mu_{\!S\alpha} \, : \, X \, \longrightarrow \, I \, : \, x \, \longrightarrow \, \left\{ \begin{array}{c} \alpha & \qquad \qquad ; \, \, \mu(x) \, > \, \alpha \\ \\ 0 & \qquad ; \, \, \text{elsewhere}. \end{array} \right.$$

- (d) $\mu \subseteq \eta$ iff $\mu_{S\alpha} \subseteq \eta_{S\alpha}$ for all $\alpha \in [0,1)$.
- (e) $\mu \subseteq \eta$ iff $\mu_{W\alpha} \subseteq \eta_{W\alpha}$ for all $\alpha \in (0,1]$.
- (f) $\mu = \eta$ iff $\mu_{W\alpha} = \eta_{W\alpha}$ for all $\alpha \in (0,1]$ and $\mu = \eta$ iff $\mu_{S\alpha} = \eta_{S\alpha}$ for all $\alpha \in [0,1)$.

Definition 0.1.8 [15,77]. Let X and Y be sets and $f: X \longrightarrow Y$. Then

(a) For any $\mu \in I^X$, the image $f(\mu) \in I^Y$ is defined by

$$f(\mu)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \mu(x) & \text{if } f^{-1}(y) \neq \emptyset \\ 0 & \text{elsewhere} \end{cases}$$

for all $y \in Y$.

(b) For any $\mu \in I^Y$, the inverse image $f^{-1}(\mu)$ of μ is an element of I^X and it defined by $f^{-1}(\mu)(x) = \mu(f(x))$ for all $x \in X$.

Proposition 0.1.9 [15,74,83]. Let $f: X \longrightarrow Y$, $\mu \in I^X$, $\eta \in I^Y$ and $\{\mu_j: j \in J\} \subseteq I^X$. Then

- (a) $\mu_1 \subseteq \mu_2$ implies $f(\mu_1) \subseteq f(\mu_2)$.
- (b) $\eta_1 \subseteq \eta_2 \text{ implies } f^{-1}(\eta_1) \subseteq f^{-1}(\eta_2).$
- (c) $f(\mu') \supseteq (f(\mu))' \cap rang(f)$ and equality holds if f is bijection.
- (d) $f^{-1}(\eta') = (f^{-1}(\eta))'$.
- (e) $f(f^{-1}(\eta) \cap \mu) = \eta \cap f(\mu)$.
- (f) $\mathrm{ff}^{-1}(\eta) \subseteq \eta$ and equality holds if f is surjective.

- (g) $f^{-1}f(\mu) \ge \mu$ and equality holds if f is injective.
- (h) for all $x_t \in S(X)$, $f(x_t)=(f(x))_t$.
- (i) $\mu_1 \neq \mu_2$ implies $f(\mu_1) \neq f(\mu_2)$.
- (j) $f(\mu) \neq \eta$ implies $\mu \neq f^{-1}(\eta)$. In particular, $f(x_t) \neq \eta$ implies that $x_t \neq f^{-1}(\eta)$.

<u>Proposition 0.1.10 [27,52]</u>. Let $f: X \longrightarrow Y$ be a mapping, $\mu \in I^X$, $\eta \in I^Y$, $A \subseteq X$ and $B \subseteq Y$. Then

(a)
$$f^{-1}(\eta_{S\alpha}) = (f^{-1}(\eta))_{S\alpha}, \alpha \in [0,1).$$

(b)
$$f^{-1}(\eta_{W\alpha}) = (f^{-1}(\eta))_{W\alpha}, \ \alpha \in (0,1].$$

(c)
$$f(\mu_{S\alpha}) = (f(\mu))_{S\alpha}, \alpha \in [0,1).$$

(d)
$$f(\mu_{W\alpha}) \subseteq (f(\mu))_{W\alpha}, \alpha \in (0,1].$$

(e)
$$f^{-1}(1_B) = 1_{f(B)}$$
 and $f(1_A) = 1_{f(A)}$.

$$(f) \ f^{-1}(\underline{\alpha} \ \cap \ 1_B) \ = \ \underline{\alpha} \ \cap \ 1_{\overline{f}^1(B)}, \ \alpha \ \in \ [0,1].$$

0.2. Fuzzy topology.

<u>Definition 0.2.1 [15]</u>. A collection $\tau \subseteq I^X$ is said to be a fuzzy topology on X if it satisfies the following conditions

- $(0, X, \emptyset \in \tau.$
- (0₂) If μ , $\eta \in \tau$, then $\mu \cap \eta \in \tau$.
- (0₃) If $\{\mu_j : j \in J\} \subseteq \tau$, then $\bigcup_{j \in J} \mu_j \in \tau$.

The pair (X,τ) is called a fuzzy topological space (fts, for short). The members of τ are called fuzzy open sets and their complements are called fuzzy closed sets.

Note that if the family $\{\underline{\alpha}: \alpha \in [0,1]\} \subseteq \tau$; (that is all the constant mappings are open), then (X,τ) is called Lowen fts or stratified fts [57]. It is called purely stratified iff $\tau \subseteq \{\underline{\alpha}: \alpha \in [0,1]\}$ and

simply stratified iff $\tau = \{\underline{\alpha} : \alpha \in [0,1]\}$ [73]. In the present thesis we do not require that (X,τ) is Lowen fts, that is we begin with the original definition of Chang [15].

Definition 0.2.2 [69]. A fuzzy set μ is called Q-neighbourhood (Q-nbd, for short)(resp. nbd) of a fuzzy point x_t iff there exists $\eta \in \tau$ such that x_t q $\eta \subseteq \mu$ (resp. $x_t \in \eta \subseteq \mu$). If μ is open then it is called an Q-open nbd (resp. open nbd). The class of all open nbd of x_t will be denoted by $N(x_t, \tau)$.

<u>Definition 0.2.3 [35]</u>. Let (X,τ) be a fts and $\mu \in I^X$. Then

- (a) The closure of μ , denoted by $cl(\mu)$, is defined as $cl(\mu) \doteq \bigcap \{\lambda : \lambda' \in \tau \text{ and } \mu \subseteq \lambda\}.$
- (b) The interior of μ , denoted by $int(\mu)$, is defined as $int(\mu) = \bigcup \{ \rho : \rho \in \tau \text{ and } \rho \subseteq \mu \}.$

<u>Proposition 0.2.4 [20].</u> Let (X,τ) be a fts, $x_t \in S(X)$ and $\mu \in I^X$. Then

- (a) For all $\eta \in \tau$, $\eta \neq \mu$ iff $\eta \neq cl(\mu)$.
- (b) $x_t \neq cl(\mu)$ iff for all $\eta \in N(x_t, \tau)$, $\eta \neq \mu$.

<u>Definition 0.2.5 [62,85]</u>. (a) Let Y be a crisp subset of X. Then (Y, τ_{Y}) is called a subspace of (X, τ) , where τ_{Y} is the fuzzy topology given by $\tau_{Y} = \{Y \cap \mu : \mu \in \tau\}.$

A subspace Y is closed (resp. open) if the crisp subset Y of X is closed (open) in X. For any fuzzy set μ in X the relative complement $\tau_{_{Y}}-\mu'$ of μ with respect to Y is a fuzzy set in X given by $\tau_{_{V}}-\mu'=Y\cap\mu'$.

- (b) A subfamily β of τ is a base for τ iff each member of τ can be expressed as the union of some members of β .
 - (c) A subfamily ξ of τ is a subbase for τ iff the family of all

finite intersections of members of ξ form a base for τ .

(d) Let $\{(X_j, \tau_j) : j \in J\}$ be a family of fts's and let $X=\prod_{j \in J} X_j$ be the cartesian product of $\{X_j : j \in J\}$. Then the product fuzzy topology τ on X is the one with basic fuzzy open sets of the form $\prod_{j \in J} \eta_j$ where $\eta_j \in \tau_j$ and $\eta_j \neq X_j$ only for a finitely many $j \in J$. The pair (X, τ) is called the product space. Note that $(\prod_{j \in J} \eta_j)(x) = \inf_{j \in J} \{\eta_j(x)\}$, where $x = (x_j)_{j \in J}$.

<u>Definition 0.2.6 [28,79]</u>. A mapping $f:(X,\tau)\longrightarrow (Y,\sigma)$ is called

- (a) Fuzzy continuous (F-continuous, for short) iff $f^{-1}(\mu) \in \tau$ for all $\mu \in \sigma$.
- (b) f is called F-open (resp. F-closed) if the image of every F-open (resp. F-closed) set in X is an F-open (resp. F-closed) in Y.

<u>Definition 0.2.7 [28]</u>. The mapping $f:(X,\tau)\longrightarrow (Y,\sigma)$ is said to be F-homeomorphism if it is bijective, F-continuous and f^{-1} is F-continuous. Two fts's X and Y are said to be F-homeomorphic if there is an F-homeomorphism mapping $f:X\longrightarrow Y$.

<u>Definition 0.2.8 [28]</u>. A property $\mathfrak P$ of an fts X is called a fuzzy topological property if whenever it is true for an fts X is also true for every F-homeomorphic of X.

<u>Definition 0.2.9 [30]</u>. (a) The fuzzy unit interval I_f is the set of all decreasing mappings $\lambda:R\longrightarrow I$, (R, the real number), for which

$$\lambda(t) = \begin{cases} 1 & \text{if } t < o \\ 0 & \text{if } t > 1. \end{cases}$$

Note that λ_1 , λ_2 are equivalent if for all $t \in \mathbb{R}$ $\lambda_1(t-) = \lambda_2(t-) \text{ and } \lambda_1(t+) = \lambda_2(t+).$

(b) For each $t \in (0,1)$, we define

$$R_t : I_f \longrightarrow I \text{ by } R_t(\lambda) = \lambda(t+) \text{ and}$$

$$L_t : I_f \longrightarrow I \text{ by } L_t(\lambda) = 1 - \lambda(t-).$$

(c) The fuzzy topology on I_f is that which has $\{R_t, L_t : t \in R\}$ as a subbase. This topology is called the usual fuzzy topology on I_f .

Definition 0.2.10 [38,42] A fts (X,τ) is called

- (a) FT₀ iff $x_t = q y_r$ implies that there exists $\mu \in \tau$ such that $(x_t \in \mu \text{ and } \mu = q y_r)$ or $(y_r \in \mu \text{ and } \mu = q x_t)$.
- (b) FT₁ iff $x_t = q y_r$ implies that there exist $\mu \in N(x_t, \tau)$ and $\rho \in N(y_r, \tau)$ such that $(x_t \in \mu \text{ and } \mu = q y_r)$ and $(y_r \in \rho \text{ and } \rho = q x_t)$.
- (c) FT₂ or F-Hausdorff iff $x_t^{\overline{q}} y_r$ implies that there exist $\mu \in N(x_t^{-}, \tau)$ and $\rho \in N(y_r^{-}, \tau)$ such that $\mu = \overline{q} \rho$.
- (d) $FT_{2\frac{1}{2}}$ or F-Urysohn iff $x_t \bar{q} y_r$ implies that there exist $\mu \in N(x_t, \tau)$ and $\rho \in N(y_r, \tau)$ such that $cl(\mu) \bar{q} cl(\rho)$.
- (e) FR or F-regular iff $x_t^{\overline{q}} \lambda$, λ is τ -closed fuzzy set implies that there exist $\mu \in N(x_{\downarrow}, \tau)$ and $\rho \in N(\lambda, \tau)$ such that $\mu \ \overline{q} \ \rho$.
- (f) FR₃ or F-normal iff λ_1 \bar{q} λ_2 , λ_1 and λ_2 are τ -closed fuzzy sets implies that there exist $\mu \in N(\lambda_1, \tau)$ and $\rho \in N(\lambda_2, \tau)$ such that $\mu \ \bar{q} \ \rho$.
- (g) FR₂ or F-completely regular iff $x_t^{-1}q^{-1}\lambda$, λ is τ -closed fuzzy set, there exists an F-continuous mapping $f: X \longrightarrow I_f$ such that $x_{\star}(y) \leq f(y)(1-) \leq f(y)(0+) \leq \lambda'(y), \text{ for all } y \in X.$
- (h) FT_{k+1} iff it is FT_1 and FR_k , k=2,3.

Definition 0.2.11 [20]. Let (X,τ) be a fts and $\mu \in I^X$. Then

(a) A family $\{\eta_j: j \in J\} \subseteq \tau$ is called an open cover of μ iff for all $x_t \in \mu$ there exists $j \in J$ such that $x_t \in \eta_j$.

- (b) μ is called a C-set iff every open cover of μ has a finite subcover.
- (c) (X,τ) is called F-compact iff every closed fuzzy set is C-set.

Theorem 0.2.12 [20]. (a) Every C-set in a FT fts is a fuzzy closed set.

(b) Every F-continuous image of a C-set is a C-set.

<u>Definition 0.2.13 [86]</u>. Let (X,τ) be a fts, $\alpha \in (0,1]$ and $\mu \in I^X$. Then

- (a) The family $\Gamma \subseteq \tau$ is called an open Q_{α} -cover of μ iff for all $x_{t} \in \mu$, $t \geq \alpha$ there exists $\eta \in \Gamma$ such that $x_{t} \neq \eta$.
- (b) A subfamily β of an open $\textbf{Q}_{\alpha}\text{-cover }\Gamma$ of μ which is also an open $\textbf{Q}_{\alpha}\text{-cover of }\mu\text{ is called an open }\textbf{Q}_{\alpha}\text{-subcover}.$
- (c) μ is called F.Q -compact iff each an open Q -cover of μ has a finite open Q -cover.
- (d) (X, τ) is called F.Q -compact iff X is F.Q -compact.

Definition 0.2.14 [25]. Let (X,τ) be a fts and let $\alpha \in [0,1]$.

A collection $\Gamma \subseteq \tau$ is called an α -shading (resp. α^* -shading) of X iff for each $x \in X$, there exists $\eta \in \Gamma$ with $\eta(x) > \alpha$ (resp. $\eta(x) \ge \alpha$). A subcollection β of an α -shading (resp. α^* -shading) Γ of X that is also an α -shading (resp. α^* -shading) is called an α -subshading (resp. α^* -subshading) of Γ . (X,τ) is called α -compact (resp. α^* -compact) iff each α -shading (resp. α^* -shading) of X has a finite α -subshading (resp. α^* -subshading).

<u>Definition 0.2.15 [57].</u> Let (X,T) be an ordinary topological space. The set of all lower semicontinuous functions from (X,T) into the closed unit interval equipped with the usual topology constitutes, a fuzzy topology

on X and it is called the induced fuzzy topology associated with (X,T) and is denoted by $(X,\omega(T))$.

<u>Lemma 0.2.16 [73]</u>. (a) The set $\omega_{\alpha}(T) = \{\mu \in I^X : \mu_{S\alpha} \in T\}$ is a fuzzy topology on X and it is called α -topologically generated fuzzy topology.

(b)
$$\omega(T) = (\bigcap_{\alpha \in (0,1)} \omega_{\alpha}(T)) = \{\mu \in I^X : \mu_{S\alpha} \in T \text{ for all } \alpha \in [0,1)\}.$$

<u>Definition 0.2.17 [59]</u>. A property \mathfrak{P}_f of a fts is said to be a good extension of the property \mathfrak{P} in classical topology iff whenever the fts is topologically generated (induced) by (X,T), then $(X,\omega(T))$ has the property \mathfrak{P}_f iff (X,T) has the property \mathfrak{P}_f .

<u>Lemma 0.2.18 [27]</u>. Let (X,T) be an ordinary topological space, $\mu \in I^X$ and and $A \in P(X)$, the power set of X. Then we have

- (a) $\mu \in \omega(T)$ iff for all $\alpha \in [0,1)$ $\mu_{s\alpha} \in T$.
- (b) μ is ω (T)-closed iff for all $\alpha \in (0,1]$, $\mu_{w\alpha}$ is T-closed.
- (c) $A \in T \text{ iff } 1_A \in \omega(T)$.
- (d) A is T-closed iff 1_{A} is $\omega(T)$ -closed.
- (e) $cl(1_A) = 1_{cl(A)}$.

Theorem 0.2.19 [20]. Let (X,T) be an ordinary topological space. Then (X,T) is T_2 iff $(X,\omega(T))$ is FT_2 .

Definition 0.2.20 [57]. Let (X,τ) be a fts. Then the family $\iota_{\alpha}(\tau) = \{\mu_{S\alpha} : \mu \in \tau\}, \ \alpha \in [0,1)$ is a topology on X and it constitutes a subbase for the so-called initial topology associated with (X,τ) , which is denoted by $(X,\iota(\tau))$.

Lemma 0.2.21 [57]. Let (X,τ) be a fts and $\mu \in I^X$. Then :

- (a) $\mu \in \tau$ iff for all $\alpha \in [0,1)$ $\mu_{S\alpha} \in \iota(\tau)$.
- (b) μ is τ -closed iff for all $\alpha \in (0.1]$, $\mu_{w\alpha}$ is $\iota(\tau)$ -closed.

Let $\mathfrak{F}(X)$, $\mathfrak{P}(X)$ be the collections of all filters, respectively prefilters on X [73]. Also $\mathfrak{P}^c(X)$ denotes the set of all prefilters on X which excluded the constant functions $\underline{\alpha}$, that is $\beta \in \mathfrak{P}^c(X)$ iff $\beta \in \mathfrak{P}(X)$ and $\underline{\alpha} \notin \beta$. The elements of $\mathfrak{P}^c(X)$ are called α -prefilters. Associated with each α -prefilter β , we define a filter on X by, $\iota_{\alpha}(\beta) = \{\mu_{S\alpha} : \mu \in \beta\}$.

Likewise, associated with each filter Γ on X, a α -prefilter for each $\alpha \in [0,1)$ is defined by $\omega_{\alpha}(\Gamma) = \{\mu \in I^X : \mu_{S\alpha} \in \Gamma\}.$

Definition 0.2.22 [73]. Let (X,τ) be a fts, $\mathfrak{F} \in \mathfrak{P}(X)$ and $x_{\alpha} \in S(X)$, $\alpha \in [0,1)$. We say that \mathfrak{F} α-converges to x_{α} (or $\mathfrak{F} \xrightarrow{\alpha} x_{\alpha}$) if

- (a) ℜ ∈ P^c(X).
- (b) The filter $\iota_{\alpha}(\mathfrak{F})$ on X convergs to x in the topological space $(\mathsf{X},\iota_{\alpha}(\tau)).$

Proposition 0.2.23 [73]. (a) Let (X,τ) be a fts and $Y\subseteq X$. Then

$$\iota_{\alpha}(\tau_{\mathbf{v}}) = (\iota_{\alpha}(\tau))_{\mathbf{v}}.$$

(b) Let $\{(X_j, \tau_j) : j \in J\}$ be a family of fts's. Then $\iota_{\alpha}(\prod_{i \in J} \tau_i) = \prod_{i \in J} \iota_{\alpha}(\tau_i).$

Definition 0.2.24 [73]. A fts (X,τ) is called

- (a) α -topologically generated (or α .TG) if there exists a topology T on X such that $\omega_{\alpha}(T) = \tau$.
- (b) Topologically generated (or TG) if there exists a topology T on X such that $\omega(T) = \tau$.

Note that, if (X,τ) is $\alpha.TG$ (resp. TG), then