CONTENTS

hag	,
ACKNOWLEDGEMENTS	
ABSTRACT	
INTRODUCTION	
CHAPTER 1: THE RESPONSE OF ONE- DEGREE-OF- FREEDOM SYSTEM WITH NONLINEARITIES TO MULTI FREQUECNY EXCITATIONS.	
§-1.1) Introduction	
§-1.2) problem formulation	•
§-1.3) Mathematical analysis	,
\S -1.4) First case: primary resonance: $\Omega \cong \omega_0$,
§-1.5) Second case subharmonic resonance of order $\frac{1}{2}$: $\Omega_n = 2 \omega_0 \dots 17$	
§-1.6) Frequency response curves for harmonic and subharmonic	
Resonance	
§-1.7) Numerical simulations	
1.7.1) The effects of the dumping factor μ	
1.7.2) The effects of excitation force F	
1.7.3) The effects of the natural frequency ω_0	
1.7.4) The effects of excitation frequency Ω	
1.7.5) Some resonance conditions	

CHAPTER 2: TWO-TO-ONE ENTERNAL RESONANCES IN NONLINEAR TWO DEGREE OF REEDOM SYSTEM WITH PARAMETRICAND EXTERNALCITATIONS [74]

0 0 1) Turing 1 and an	32
§-2.1) Introduction	.54
§-2.2) Problem Formulation	.33
§-2.3) Perturbation Solution	33
§-2.4) Principal parametric resonance cases	.36
2.4.1) For the first mode	36
2.4.2) For the second mode	37
§-2.5) Stability analysis	39
2.5.1) Linear solution (trivial solution)	39
2.5.2) Nonlinear solution (non-trivial solution)	40
§-2.6) Frequency response curves for principal parametric resonance	41
§-2-7) Numerical simulations	47
2.7.1) Some resonance cases	47
2.7.2) Effects of the natural frequencies ω _I	48
2.7.3) Effects of the excitation force frequency Ω_{2}	48
2.7.4) Effects of the damping factors μ_{I}	49

CHAPTER 3: RESPONSE OF TWO-DEGREE-OF-FREEDOM SYSTEM WITH
QUADRATIC NONLINEARITIES SUBJECT TOMULTI-
FREQUENCY EXTERNAL EXCITATIONS

§-3.1) Introduction	56
§-3.2). Problem Formulation	57
§-3.3) Mathematical analysis	57
§-3.4) Numerical simulations	69
3.4.1) Effects of the damping factors μ_n	69
3.4.2.) Effects of excitation forces ksn	69
3.4. (a) Effects of the natural frequencies (ω_1, ω_2):	70
3.4.) Some resonance cases	70
CHAPTER 4: RESPONSE OF THREE-DEGREE-OF-FREEDOM SYSTEM WITH QUADRATIC AND QUBIC NON-LINEARITIES SUBJ	ECT
TOMULTI-FREQUENCY EXTERNAL EXCITTIONS	
§-4.1) Introduction	76
§-4.2). Problem Formulation	76
§-4.3) Mathematical analysis	
§-4.4) Numerical simulations	111
4.4.1) Effects of the damping factors μn	101
4.4-2) Effects of excitation forces ksn	101
4.4.3) Effects of the natural frequencies ω _i	101
4.4.4) Effects of the excitation force frequency Ω_1	102
4.4.6) Some resonance cases	102

ABSTRACT

The objective of this thesis, which consists of four chapters is to study some problems in non-linear oscillations, which governed by one or coupled set of second order non-linear differential equations.

The study in the first two chapters is focused on:

- Finding the approximate solutions in the presence of internal resonances conditions using the perturbation method.
- Determination of the steady state solutions (periodic solutions).
- Obtaining the frequency response equations.
- Examining the stability of the steady state solutions, by applying the variational method.
- Determining the sort of the stability by using Routh -Hurwitz Criterion.
- Graphical presentation of the results and its discussion.
- Finding numerical simulations of the equations and its discussion.

In the second two chapters, the study is devoted to the construction of analytic expression to the solution up to the third approximation

- Finding numerical simulations of the equations and its discussion.

The first chapter is devoted to the system having one-degree-of- freedom with quadratic, cubic and quartic non-linearities to the sum of external excitation and multi-excitation frequency.

The second chapter is concerned with principal parametric resonance of two-degree-of freedom system with quadratic and cubic non-linearities in the presence of two to – one internal resonance.

The third chapter is devoted to the response of two-degree-of- freedom with quadratic non-linearities to multi- frequency excitations.

The fourth chapter is concerned with the response of three-degree-offreedom system with quadratic and cubic non-linearities to multi-frequency excitations.