RESULTS

Virus Concentration Assay

Table (5) Comparison between nitrocellulase and glass microfibre filters for concentration of coxsackievirus type B4 in Experimentally infected effluents.

Membrane type	Without	Conditioning*	After	Conditioning**
	PFU/100 ml	% of recovey	PFU/100 ml	% of recovey
Nitrocellulose 0.45 um poresize (scheicher+schuell)	1.35 X 10 ⁴	30	1.98 X 10 ⁴	40
Glass microfibre filter (Gf / A) (whatman)	1.14 X 10 ⁴	20	1.85 X 10 ⁴	40

^{*} Initial concentration is 4.5 X 10⁶ PFU/ 100 ml

Table (4) showes that no great difference in Nitrocellulose membrane with and without conditioning where the percentage of recovery were 40% and 30% respectively. In case of glass microfiber filter the percentage of recovery were 40% and 20% respectively. Between Nitrocellulose and Glass microfiber after conditioning the percentage of virus recovery were the same, so we started the concentration process with nitrocellulose membrane because its availability.

^{**} Conditioning means the addition of AlCl 3 and adjustment of pH at 3.5

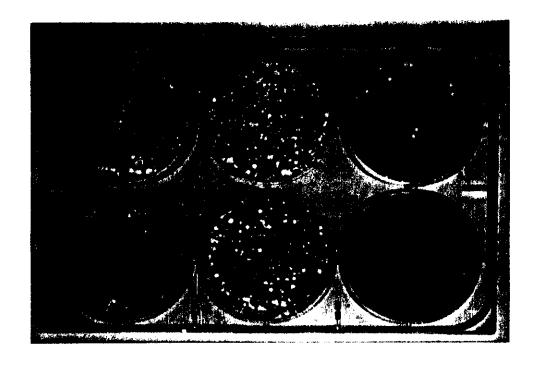


Fig (3): Plaque Assay Titration Of Coxsackie B4 Virus Concentrated By Filtration Through

- (A) Nitrocellulose Menbrane 0.45 µm Pore Size :
 - 1- Before Conditioning,
- 2- After Conditioning
- (B) Glass Microfiber Menbrane:
 - 1- Before Conditioning,
- 2- After Conditioning

Well No (3) Represent Coxsackie B4 Viruse Initial Seed, & Well No (4) Is Control BGM Cells.

Virus isolation in cell cultures

Table (6) Effect of concentrated wastewater samples from Aerated facultative pond effluent (AeE) on cell cultures.

Site of Samples	Date oF Sampling	Effect O	n Cell Cultur	es (CPE +/-)
		BGM	VERO	C ₆ 36
Aerated facultatitve	5/91	+	+	-
pond Effeuent	6/91	+	+	-
(AeE)	7/91	+	+	-
	8/91	+	+	-
	9/91	+	+	-
	10/91	+	+	-
	11/91	+	+	-
	12/91	+	+	-
	1/92	+	+	
	2/92	. +	+	-
	3/92	· +	+	-
	4/92	+	+	-
·				

Table (7) Effect of concentrated wastewater samples from Maturation pone effluent (ME) on cell cultures.

Site of Samples	Date oF Sampling	Effect O	n Cell Cultur	es (CPE +/-)
		BGM	VERO	C ₆ 36
		-		
Matursation pond	5/91	+	+	-
Effeuent (ME)	6/91	+	+	-
	7/91	+	+	-
	8/91	+	+	-
	9/91	+	+	-
	10/91	+	+	-
	11/91	+	. +	-
	12/91	+	+	-
	1/92	+	+	-
	2/92	+	+	-
	3/92	-1	1	-
	4/92	+	+	-

Table (8) Effect of concentrated wastewater samples before Maturation pond effluent (ME) on cell cultures.

Site of Samples	Date oF			res (CPE +/-)
	Sampling	BGM	VERO	C ₆ 36
Before Maturation	5/91	+	+	-
pond Effeuent (ME)	6/91	+	+	-
	7/91	+	+	-
	8/91	+	+	-
	9/91	+	+	-
	10/91	+	+	-
	11/91	+	+	-
	12/91	+	+	-
	1/92	+	+	-
	2/92	+	+	**
	3/92	+	+	-
	4/92	+	+	-
				,

Table (9) Effect of concentrated wastewater samples After Maturation pond effluent (ME) on cell cultures.

Site of Samples	Date oF	Effect C	n Cell Cultu	res (CPE +/-)
	Sampling	BGM	VERO	C ₆ 36
After Maturation	5/91	+	+	-
pond Effeuent (ME)	6/91	+	+	-
	7/91	+	+	-
	8/91	+	+	-
	9/91	+	+	-
	10/91	+	+	-
	11/91	+	+	-
	12/91	+	+	-
	1/92	+	+	-
	2/92	+	+	-
	3/92	+	4	-
	4/92	+	+	-
				:

Tables (6,7,8,9). shows that BGM and vero cell lines were sensitive for enteroviruses isolation and BGM cells were sensenitive and speed than vero for virus isolation, but C_636 cells were found not sensitive.

Identification of virus isolates.

Table (10) Virus type of the CPE induced Samples in Aerated facultative pond Effluent (AeE)

Date of			Virus	type		
Sampling '	PVI	PVII	PVIII	COX.A ₆	COX.B ₄	Rotavirus
5/91	-	-	+	+	-	-
6/91	-	-	+	-	+	-
7/91	-	-	+	-	+	-
8/91	-	+	+	-	+	-
9/91	-	-	+	-	+	-
10/91	+	-	-	-	+	-
11/91	-	+	+		-	-
12/91	+	-	+	+	-	-
1/92	+	-	-	-	+	-
2/92	+	+	+	-	-	-
3/92	-	-	+	-	-	-
4/92	+	-	+	-	_	-

Table (11) Virus type of the CPE induced Samples in Maturation Pond Effluent (ME)

Date of			Virus	type		
Sampling	PVI	PVII	PVIII	COX.A ₆	COX.B ₄	Rotavirus
5/91	-	-	+	+	+	-
6/91	-	-	+	-	-	-
7/91	-	+	+	-	+	-
8/91	-	_	+	-	-	-
9/91	-	-	+	-	+	-
10/91	+	-	+	-	+	-
11/91	-		+	-	-	-
12/91	-	-	+	+	+	-
1/92	+	_	+	-	-	-
2/92	+	+	+	-	-	-
3/92	-	+	+	-	-	-
4/92	+	+	-	+	-	-

Table (13) Virus type of the CPE induced Samples After Maturation pond Effluent (ME)

Date of			Virus	type		
Sampling	PVI	PVII	PVIII	COX.A ₆	COX.B ₄	Rotavirus
5/91	<u>.</u>	+	+	<u>-</u>	+	_
6/91	-	-	+	-	+	-
7/91	-	+	+	-	+	-
8/91	-	+	+	-	+	-
9/91	+	-	-	+	+	-
10/91	-	-	+	-	+	-
11/91	-	-	-	+	+	-
12/91	-	-	+	-	-	-
1/92	-	-	+	-	-	
2/92	-	-	-	+	-	-
3/92	-	-	+	-	-	-
4/92	+	-	-	-	-	-

Tables (10,11,12,13) shows that poliovirus type III was dominant in sludge (37.2%) followed by coxsackievirus type B4 (21.5%), Polioviurs type I (16.6%), poliovirus type II (13.7%), Coxsackievirus A6 was detected in (10.7%) of the investigated samples, while Rotavirus was not detected in all samples.

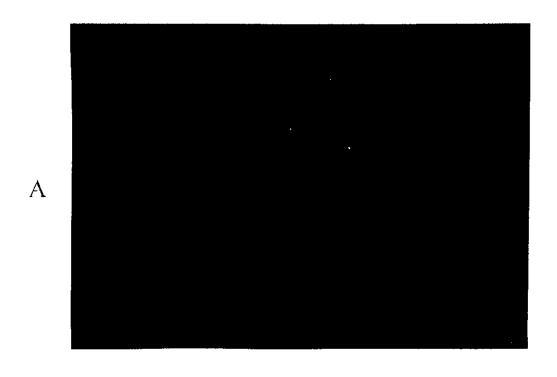
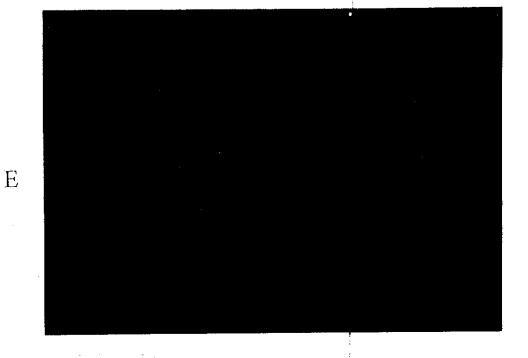
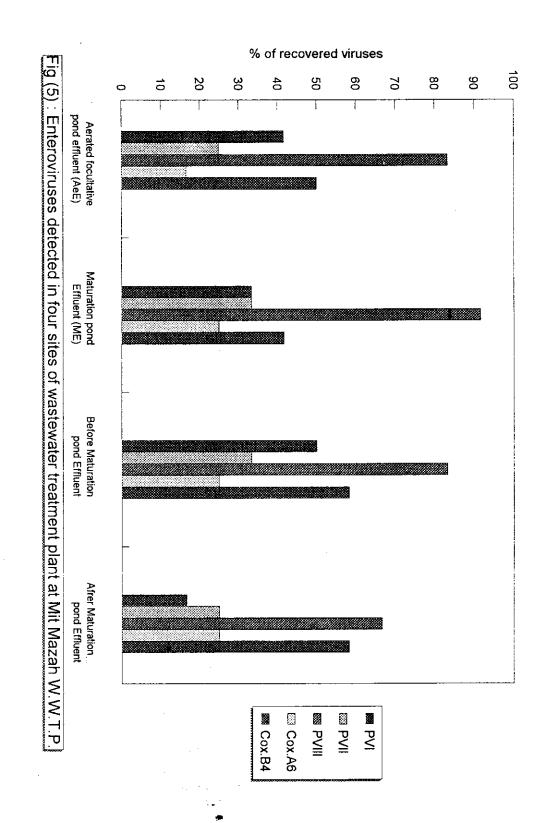
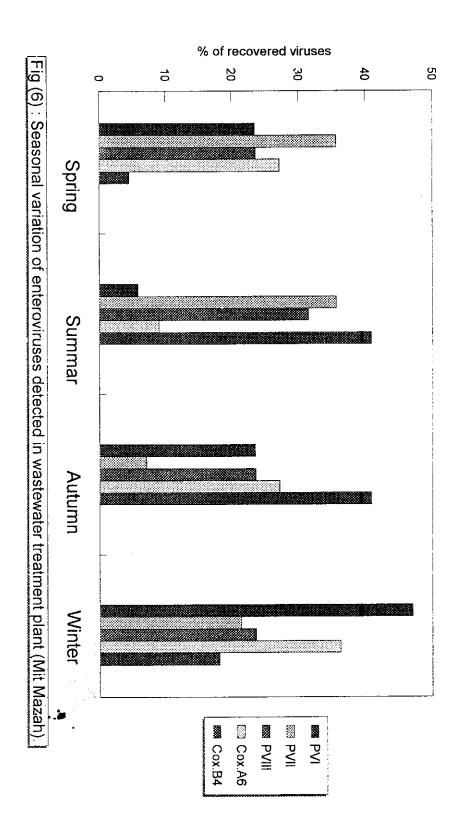


Fig (4): DOT-Enzyme Linked Immunosorbent Assay (DOT-ELISA) For CPE-Induced Samples At The Third Passage In BGM Cells. Positive Dots Appear In Brown Color.

(A) Positive Samples For Poliovirus Type I.


- (b) " " Poliovirus Type II.
- (c) "Poliovirus Type III.
- (d) " " Coxsackievirus Type A6.
- (e) " " Coxsackievirus Type B4.


81


В

C,

D

Assay of Disimfection

Table (14) Effect of chlorine disinfection on polio II virus seeded wastewater effluent.

chlorine	Virus count *		
dose	CPE (+/-)	virus count (PFU/ml)	
5	+	over	
10	+	130	
15	+	10	
20	0	0	
25	0	0	
30	0	0	

^{*} Polio II virus (initial seed is 7×10^7 Pfu / ml)

Table (15) Effect of chlorine disinfection on Coxsackievirus Type B_4 seeded wastewater effluent.

chlorine	Virus count *		
dose	CPE (+/-)	virus count (PFul /ml)	
5	+	2160	
10	÷	620	
15	+	540	
20	+	320	
25	+	20	
30	-	0	

^{*}Coxsackie virus type B_4 (initial seed is $4.5 \times 10^6 \ PFU / 100 \ ml)$

Table (14,15) Shows the amount of chlorine that inactivated Poliovirus Type II (Salk strain) was 20 mg/L (Residual chlorine 1.9 mg/L) where as needed for inactivation of Coxsackie virus B₄ was 30 mg/L (Residual chlorine is 2.3 mg/L)

Table (16) Effect of Ozone disinfection on polio II virus seeded wastewater effluent.

Ozonation	Virus count			
time (min)	CPE (+/-)	virus count (PFU /ml)		
9	<u>.</u>	250		
11	÷	210		
13	+	140		
15	+	80		
17	0	0		
19	0	0		
21	0	0		

87

Table (17) Effect of Ozone disinfection on Coxsackie virus Type B_4 seeded wastewater effluent.

Ozonation	Virus count		
time (min)	CPE (+/-)	virus count (PFU/ml)	
9	+ .	920	
11	+	420	
13	+	230	
15	+	20	
17	+	10	
19	+	20	
21	+	10	

Table (16,17) Shows the doses of ozone used for poliovirus II inactivation was 3/9 mcg/L/h, 17 min, whereas for Coxsackievirus B_4 over 21 min.

Table (18) Effect of u.v exposure time for disinfection of Polio II virus in seeded wastewater

Exposure	Viru	Virus count *			
time(sec)	CPE (+/-)	virus count (PFU /ml)			
5	+	over			
10	, +	130			
15	+	10			
20	-	0			
25	-	0			
30	-	0			

Table (19) Effect of u.v exposure time for disinfection of Coxsackie B_4 virus seeded wastewater

Expoure	Virus count *			
time (sec)	CPE (+/-)	virus count (PFU /ml)		
5	+	over		
10	+	280		
15	+	30		
20	-	0		
25	-	0		
30	-	0		

Table (18,19) Shows that U.V exposure time for disinfection of poliovirus II and Coxsackievirus B_4 were the same 20 sec for seeded effluent samples.

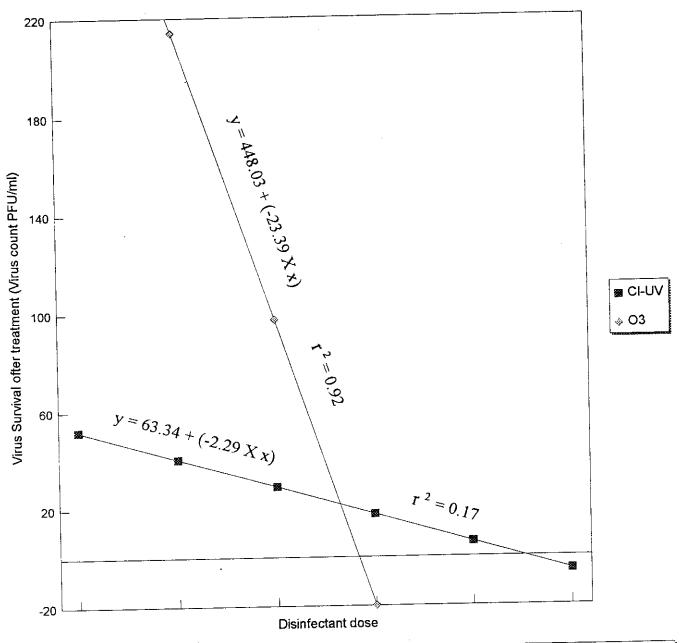


Fig (7): Regression Correlation between Polio II virus count and different Disinfectant Dose

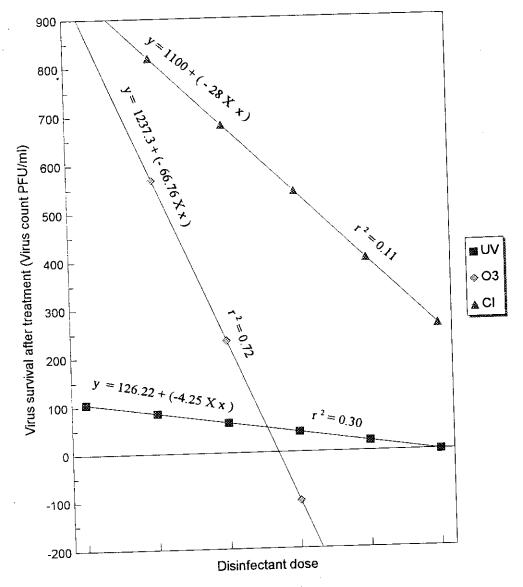


Fig (8) : Regression Correlation between Coxsackie virus type B4 Count and different disinfectant Doses.

Fig (7,8): Revealed high regression coefficient, this means that ozone is the most suitable disinfetant for coxsackievuns type B4 and polio virus type II where the regession cefficient reached to 0.72 for cox. B4 and 0.92 for PVII.

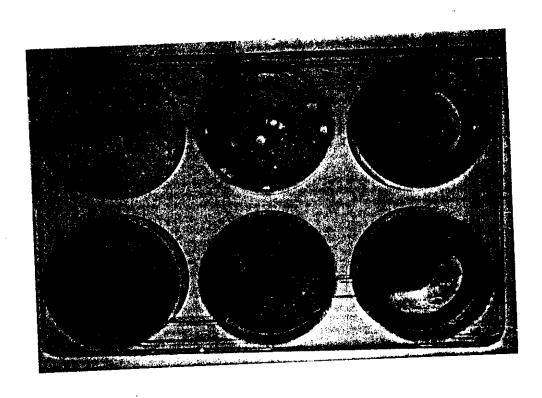


Fig (9): Effect Of Chlorine Disinfection On Poliovirus Tupe II (Salk Strain).

At 20 mg Chlorine / L For 30 min, Complete Inactivation Of The

Virus was done.

Table (20) Selected chemical - physical water quality data for four samples locations

Matur ation pond	Before Matur ation	After Matur ation
Effeuent (ME)	pond Effeuent (ME)	pond Effeuent (ME)
021.100	, 019.200	018.500
007.900	008.000	007.800
891.000	205.000	283.000
061.000	189.000	312.000
000.065	000.008	000.328
000.500	000.360	000.490
	078 530	050.025
050.210	048.000	
	021.100 007.900 891.000 061.000 000.065 000.500 050.210	

selected chemical-physical water quality data for four samples location :-

The physicochemical parameters (water temperature, Hydrogen ion PH, Turbidity, and Electric conductivity) was detected. No clear change was observed in temperature and PH value between different sites. High electric conductivity was recorded in After maturation pond effluent, reached to 312 M mosh/cm, high reduction in turbidity value between different sites where it reached to 900 and 891 in Aireated facultative pond effluent (AeE) and Maturation pond effluent (ME) while reached to 205 and 283 in before Maturation pand effluent and After Maturation pond effluent. Also table (21) showed that Ammonia and Nitrate values ranged between 48.5-50.2. For Ammonia, and ranged between 0.36-0.50 for Nitrate. high Nitrate value was detected at After Maturation pond effluent where it reached to 0.328, while in other sites it ranged between 0.006-0.065

Table (21) The population of aquatic insects collected in different seasons

Species	sping								
	Spini	g s	ummer	Au	tumn	Winte	r To	Total	
^\ .									
Order: Hemiptera							Ì		
Family: Belostomatidae			160	14	0	30	1 1	55	
Shnaerodellia urmator			19	10)	3	4	9	
Limnogeton Fieberi Mayer				1				_	
Family: Nepidae			3	20)	2	2	5	
Ranatra vicina sign	0					1			
Family: Gerridae	0		3	1		0	4		
Gerris aegyptiacus	ľ	1							
	1								
Order: Coleoptera		1						- /	
Family: Hydrophilidae	9	Ì	13	2	9	5	-	56	
Amphiops lucidus Family: Dytscidae						1		- 0	
			8	3	;	2	i i	18	
Cybister tripunctatus africanus		1	7)	0		10	
Hydaticus leander Rossi			10	3	3	4		35	
Sternolophus solieri cast	18		3	13	3	0	1	7	
Canthydrus no tula Er.	1								
D'Alema						1			
Order: Diptera Family: Culicidae Aedes sp Anopheles sp			1				1		
		<i>†</i>	0		0	5		42	
		•	0	1	11	19	1	30	
)	7	- 1	28	30	l	125	
Culex pipens			1						
Order: Odonata									
Family: Aeschnidae	-				10	3	ļ	124	
Anax imperator leach		0	72		19	13		12.	
Family · Coenagriondae				1	12	8		93	
Ischnura seneglensis Ramo		0	42		13	0		39	
Enallagma Vansomereni pinhey		6	20		3	١٧			
Family : Libellulidae					1.4	12		49	
Brachy themis leucosticata		5	8		14	5		29	
Crocothemis erythraea		15	6		3			<u> </u>	
Total		281	381		300	12	28	1090	
								 	
Percentage		25.77	34.95	5	27.52	1	1.75		

The population of aquatic insects collected in different seasons:-

The results in table (20) showed that all sampling location at Mit Mazah treatment plant were strongly dominated by four Taxonomic orders Hemiptera, Diptera, Coleoptera, and Odonata. Order Hemiptera, Family Belostomatidae (Spharerodema urinator sp) Limnogeton Fieberi Mayer sp) represent 100% of the sample in spring, while in the summar represent 96%, and Family Nepidae (Ranatra vicina sign) 2%, Family Gerridae (Gerris aegyptiacus sp) 2% also. In Autumn Family Belostomatidae represent 87%, while Ranatra Vicina sign 12%, and Gerris aegyptiacus 1%. In winter SPhearodema urinator sp, and Limnogeton Fieberi Mayer represent 94%, while Ranatra vicina 6%. In spring Order Coleoptera present in two Families Family Hydrophilidae (Amphiops lucidus) 25% , while in summer it was 32%, 76% in Autnmn, and 45% in winter, while Family tripunctatus africanus, Hydaticus leander Rossi, (Cybister Dytiscidae Sternolophus solieri cast, and Canthydrus nodula Er.) represent 75% in spring, 68% in summar, 24% in Autumm, and 55% in winter order Dipter represent in Family Culicidae (Aedes Sp, Anopheheles Sp, and Culex pipens) it was 100% in all season. order Odonata it was manifasted in three families Family Aeschnidae (Anax imperator leach) 28% of the sample in spring, while family Coenagriondae Ischnura seneglensis Ramas, Enallagma vansomereni pinhey 43%, And family Libellulidae represent 28% it was Brachythemis leucosticata, and Crocothemis erythraea, family Aeschnidae in summar was 19%, 36% in Autumn, and 11% in winter. While family Coenagrionidae represent 42% of the sample in summar, 31% in Autumn, and 28% in the winter, and family Libellulidae were present in 9% from the sample in summer, 33% in Autumn, and 61% in winter As shown in Fig (10)

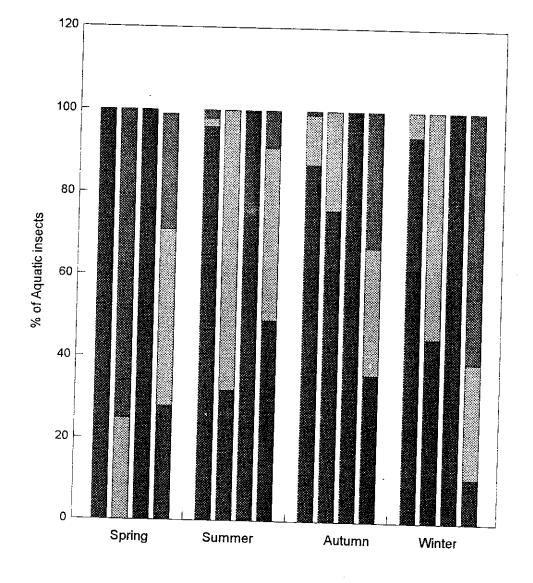


Fig (10): Population of aquatic insects collected in different seasons

a-Order Hemoptera (Family: Belostomalidae, Nepidae, and Gerridae)

b- Ordr Colesptera (Family: Hydrophilidae, and Dytscidae)

c- Order Diptera (Family: Culicidae)

d- Order Odonata (Family: Aeschnidae, Coenagriondae, and Libellulidae)

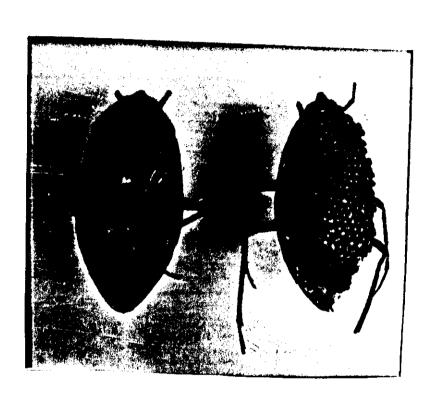


Fig (12): Limnogeton Fieberi Mayer.

Fig (13): Ranatra Vicina Sign.

Fig (14): Gerris Aegyptiacus Put.

Fig (15): Amphiops Lucidus.

Fig (16): Cybister Tripunctatus Africanus.

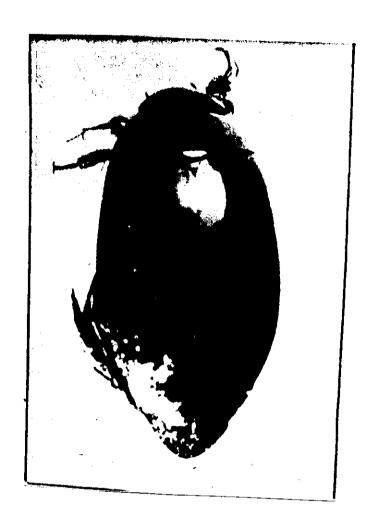


Fig (17): Hydaticus Leander Rossi.

Fig (18): Sternolophus Solieri Cast.

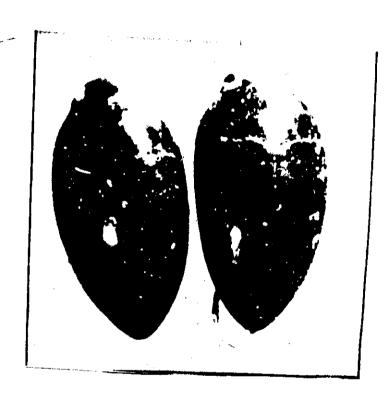


Fig (19): Canthydrus Notula Er.

Fig (20): Culex Pipens. Ae

Aedes SP. Anopheles SP.

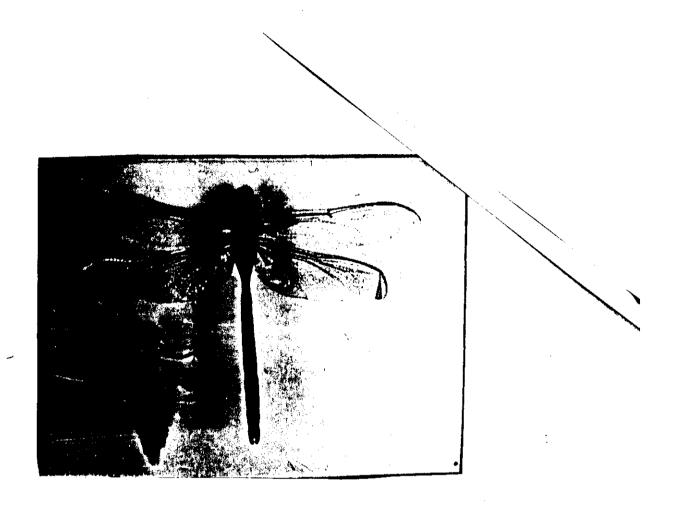


Fig (21): Anax Imperator Leach.

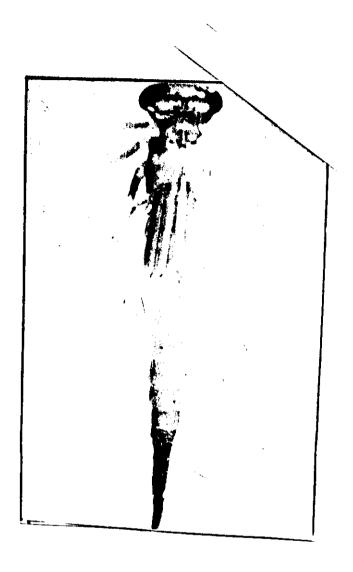


Fig (22): Ischnura Senegalensis Ramb.

Fig (23): Enallagma Vansomereni Pinhey.

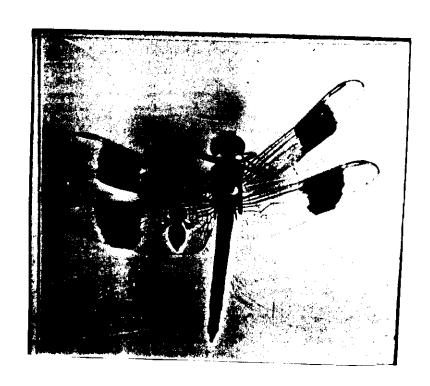


Fig (24): Brachythemis Leucosticata Burm.

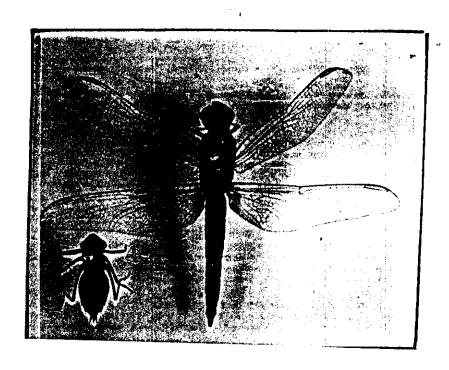


Fig (25): Crocothemis erythraea Brulle.