RESULTS

Chapter I

- 1. Isolation and identification of the most active isolate of actinomycetes producing antifungal compound.
- 1.1 Isolation of actinomycete isolate from different soil samples and screening for production of antifungal.

The collected soil samples were sieved through 3 different types with pore sizes 1.0, 0.5 and 0.25mm to remove contaminant materials. The collected soil samples from different localities of Qaluobia Governorate as illustrate in table (2) were then air dried and mixed well with CaCO₃ before plating.

A suspension of the soil sample was prepared by shaking 10 g of soil in 100 ml sterile distilled water and shaked for 20 minutes. The soil suspension was then left for 10 minutes for sedimentation. Serial dilutions were prepared to cover the range of 10⁻³ to 10⁻⁹ using sterile distilled water. 1.0 ml of each dilution was transferred aseptically to the surface of the nutrient medium in petridish and spread eventually on the surface of the medium using a sterile glass spatula. Triplicate sets of dishes were used for each particular dilution. The petri dishes were then incubated for 10 days at 28°C. Colonies of actinomycetes, which were characterized by their sharp round edges sinking in the agar medium, were picked by a sterile sharp inoculating needle. Streaking several times on the nutrient medium and then subcultured on slants of the same medium purified these colonies.

Three hundreds of actinomycetes cultures were isolated by the methods described previously. The isolated cultures were screened for their capacity of producing antifungal compounds.

Thirteen out of 300 actinomycetes isolates were showed very high activity against the tested dermatophytes fungi, namely *Tricophyton rubrum*, *Tricophyton mentagrophytes*, and *Micosporium canis*. As shown in table (3), the isolates 20, 50, 68, 69, 72, 83, 92, 94, 110, 111, 114, 155 and 160 were more active, and the isolate 68 was the highest active against the tested dermatophytes fungi.

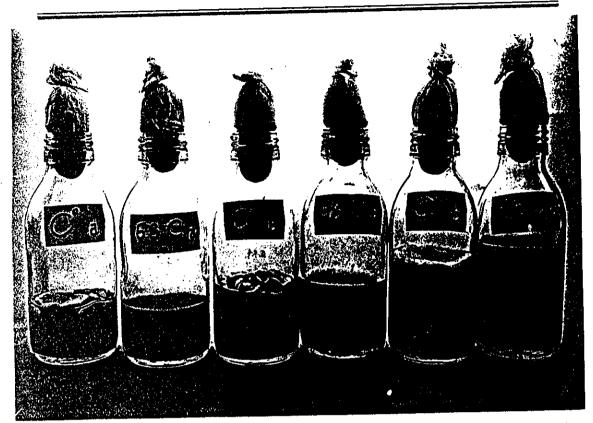
The effect of different metabolite concentrations of selected strain (68) on tested dermatophytes fungi *Tricophyton rubrum*, *Tricophyton mentagrophytes*, and *Micosporium canis* illustrated in fig. (1).

Table 2. Actinomycetes isolated from different soil samples

		<u> </u>		1				· · ·			
NO. of soil	Зашріс		2	ω	4	5	6	7	8	9	10
Location	Toukh		Kanater	Kafr-shoker	Shebin El- kanater	Moshtohor-1	Moshtohor-2	Kafr-saad-1	Kafr-saad-2	Kafr-saad-3	Kaha
Soil type	Manure		Manure	Clay loam	Clay loam	Clay loam	Clay loam	Clay loam	Sandy clay	Clay loam	Clay loam
Cultivated	Zea mays		Zea mays	Zea mays	Zea mays	Grapes	Pomegranate	Banana	Banana	Cabbage	Onion
Total count of	17		7	6	10	27	56	61	30	57	29

Table (3): Production of antidermatophytes activity from different isolate of actinomycetes at 30°C after 10 days of incubation

_							1 1: on f - atime manage filterts (starile)) time	: 1 . h			20 1 66)
<u> </u>	7	0%	0%	0%	7	0%	0%	0%	7	0%	0%	0%	Control
J	∞	80%	67%	42%	∞	0%	0%	0%	8.5	0%	0%	0%	160
	8.5	90%	72%	44%	7.7	0%	0%	0%	8.5	0%	0%	0%	155
<u></u>	9	100%	73%	45%	∞	0%	0%	0%	8.5	0%	0%	0%	114
1	∞	0%	0%	0%	∞	0%	0%	0%	9	95%	90%	85%	111
<u> </u>	7.8	0%	0%	0%	∞	0%	0%	0%	8	90%	77%	50%	110
1	∞	62%	47%	30%	8.5	0%	0%	0%	8	45%	34%	30%	94
1	9	100%	100%	98%	∞	0%	0%	0%	8.5	0%	0%	0%	92
- 48	000	0%	0%	0%	∞	0%	0%	0%	8.5	68%	55%	45%	83
<u> </u>	8.5	0%	0%	0%	8.5	0%	0%	0%	8	45%	32%	20%	72
<u> </u>	8.5	100%	100%	97%	8.5	100%	100%	97%	9.3	100%	100%	96%	69
)	8.5	100%	100%	100%	7.5	100%	100%	98%	8.5	100%	100%	98%	68
	∞	75%	53%	33%	7.8	10%	0%	0%	7.5	100%	95%	90%	50
J	7.8	60%	45%	10%	8	0%	0%	0%	8.5	0%	0%	0%	20
		Conc.c	Conc.b	Conc.a		Conc.c	Conc.b	Conc. a		Conc.c	Conc. b	Conc.a	
			ation.	concentration		ion.	different concentration	different		ation.	different concentration	different	
		different	anis at	of M.canis		hytes at	mentagrophytes	of T.		rubrum at	T. rut	(%) of	numder
;	рH	Growth inhibition rate (%)	inhibition	Growth	pH	rate (%)	inhibition rate (%)	Growth i	pH	on rate	inhibition	Growth	Isolate


Conc.b= 20 ml of fungal medium + 40 ml of actinomycete filtrate (sterile). Conc.a= 20 ml of fungal medium + 20 ml of actinomycete filtrate (sterile).

Conc.c= 20 ml of fungal medium + 60 ml of actinomycete filtrate (sterile).

Fig.(1): Effect of different concentrations of the isolate No. 68 filtrate on the growth rate of (a) *T. rubrum* (b) *T. mentagrophytes* (c) *M. canis*.

(c)

1.2 Identification of isolate 68 (produces the highest antifungal compound)

The selected isolate was identified to the species level of *Streptomyces* as follows:

- 1.2.1 Diagnostic characteristics and identification of isolate number 68

 Investigation of the morphological characteristics of isolate number 68
 - i- Spore chain morphology: straight (R)(fig. 2)
 - ii- Spore surface: smooth (S)(fig. 3)
- iii- Color of colony: the aerial mycelium in the whitish yellow, pale yellow green, white and yellowish white on oatmeal agar, malt-yeast extract agar, glucose asparagin and fishmeal agar, respectively.
- v- Reverse side of colony: distinctive pigments were detected as pale brown on both oatmeal and yeast malt extract but yellow pigment on fishmeal(table 4).
- v- Color in media: melanoid pigments were formed on tyrosine agar but were not on peptone yeast iron agar and trypton broth(table 6).



Fig. (2): Micromorphology of spore chains of isolate No. 68 X 1000.

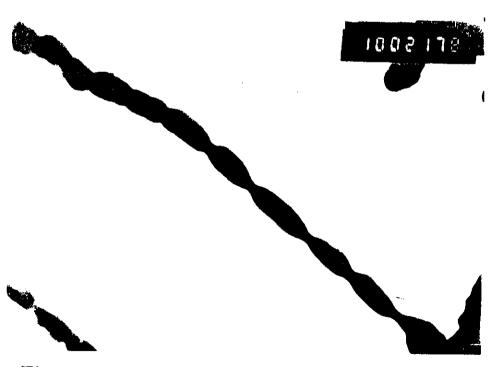


Fig. (3): Electron micrograph of spore surface of isolate 0.68

X 40 000.

 Table 4. Morphological and characterization of isolate number 68

Media		Color of		Growth
	Aerial mycelium	Substrate mycelium	Soluble pigment	
Oatmeal agar	Whitish yellow	Pale yellow	Pale brown	+Ve
Malt extract-yeast extract agar	Pale yellow green	Yellow	Pale brown	++++Ve
Inorganic salts-starch agar	Whitish yellow	Yellow	- Ve	+++Ve
Glycerol-asparagine agar	White	White	- Ve	++Ve
Sucrose-nitrate agar	Yellowish white	White	- Ve	+++Ve
Fishmeal agar	Whitish yellow	Yellow	Yellow	+++Ve
Nutrient agar	White	White	- Ve	++Ve
Starch-nitrate agar	Yellow	Brown	- Ve	+++Ve
Glycerol-nitrate agar	White	Whitish yellow	−Ve	+++Ve
Glucose-asparagine agar	White	White	- Ve	++Ve
- Ve = negative = no growth.				

++Ve = moderate growth. +++Ve = good growth.

++++Ve = very good growth.

+Ve = weak growth.

⁵³

1.2.2 Physiological and biochemical properties of isolate number 68

i-Utilization of carbon sources

As it is clear from the data recorded in table (5) the tested organism 68 succeeds to utilize all carbon sources with different degrees (except inositole, L-rhamnose and glycerol). The starch and mannitol were the best carbon sources that utilized by tested organism (good growth) as illustrated in table (5)

ii-Growth on Czapek's medium

Isolate number 68 showed very good growth on Czapek's medium.

iii-Other physiological and biochemical properties of isolate number 68

From the results in table (6) it is evident that liquefaction of gelatin, starch hydrolysis (amylase), catalase production and reduction of nitrate to nitrite were positive, but hydrogen sulfide production, peptonization and coagulation of skimmed milk and cellulose decomposition were negative.

The isolate also had the ability to breakdown certain complex compounds as L-tyrosine, aesculin, urea, tween 20 and tween 80, but the organism failed to degrade casein table (7).

iv- Growth test

Data of table (8) showed that the isolate 68 grew at 4, 7 and 10% (w/v) of NaCl concentrations but the rate of growth decreased with increasing the concentration till to 14% (w/v) of sodium chloride.

0.1% (w/v) of phenol and 0.001% (w/v) of crystal violet, did not inhibit growth of the tested isolate. Also, the results showed that the tested

isolate failed to grow in the presence of 0.01, 0.02 % (w/v) of sodium azide.

v- Resistance to certain antibiotics

From the results recorded in the table (9), the antibiotics vancomycin, rifampicin and penicillin G failed to inhibit the microbial growth, while the antibiotics tobramycin, gentamycin and streptomycin were able to prevent the isolate growth.

Table 5. Utilization of carbon sources by the isolate 68

Carbon sources	Results
D-Glucose	+Ve
D-Xylose	+Ve
L-Arabinose	+Ve
L-Rhamnose	±Ve
D-Fructose	+Ve
D-Galactose	+Ve
Raffinose	+Ve
D-Mannitol	+Ve
Inositole	-Ve
sucrose	+Ve
Glycerol	±Ve
Maltose	+Ve
Salicin	+Ve
Starch	+++Ve
Lactose	+Ve
Cellulose	+Ve
Cellobiose	+Ve
Control	±Ve

-Ve = No growth

 $\pm Ve = doubtful growth$

+Ve = Weak growth

+++Ve = Very good growth

Table 6. Physiological and biochemical properties of the isolate 68

Test	Results
Gelatin liquefaction	+Ve
Catalase production	+Ve
Reduction of nitrate	+++Ve
Cellulose decomposition	- Ve
Peptonization & coagulation	- Ve
of milk	
H ₂ S production	- Ve
Starch hydrolysis	+Ve
Melanin production	- Ve
Soluble pigment	- Ve

Table 7. Other physiological and biochemical properties of isolate 68

Degradation test	Results
Tyrosine	+Ve
Casein	+Ve
Aesculin	+Ve
Urea	+Ve
Tween 20	+Ve
Tween 80	+Ve

- Ve = Negative result
- + Ve = positive result

Table 8. Growth rate of isolate 68 in the presence of certain chemical inhibitors

Chemical	Results
inhibitor	
Sodium chloride	
conc. (w/v)	
4%	+Ve
7%	+Ve
10%	+Ve
14%	- Ve
Sodium azide	
conc. (w/v)	
0.01%	±Ve
0.02%	- Ve
Phenol	
conc. (w/v)	
0.1%	+Ve
Crystal violet	·
conc. (w/v)	
0.001%	+Ve

- Ve = Negative

 $\pm Ve = doubtful growth$

+Ve = Positive

Table 9. The ability of isolate 68 to resist certain antibiotic

Antibiotics	Sensitivity
Vancomycin	+Ve
Tobramycin	-Ve
Rifampicin	+Ve
Gentamicin	-Ve
Streptomycin	-Ve
Penicillin G	+Ve

-Ve = No inhibitor (sensitive)

+Ve = Inhibitor (resistance)

Comparing the pervious morphological and physiological characteristics with those of *Streptomyces* species included in International Streptomyces Project (I.S.P.) (Shirling and Gottlieb 1968a, 1968b, 1969, 1972) and Bergey (1979& 1994) and Szab *et al.* keys (1975) entry as aerial and substrate mycelium color, reverse pigment, the form of sporophore and the source of carbon utilized. These keys lead to the identification of the experimental organism as *Streptomyces kanamyceticus*.

Waksman key (1961) entry as the form of sporophore in aerial mycelium, melanin pigments negative and weakly proteolytic enzyme, the key lead to the characterization as *Streptomyces* griseoloalbus.

Descriptions of the *Streptomyces* species given by the various keys <u>Streptomyces kanamyceticus</u>

Spore chain morphology: straight sporophore with mature spore chains generally 10 to 50 spore per chain, longer chains are sometimes observed on suitable media, this morphology is seen on yeast-malt agar and glycerol asparagin agar, sporulation may be poor on oatmeal agar and salts starch agar.

Spore surface: smooth.

<u>Color of colony:</u> aerial mass color in white to yellow color on glycerol nitrate agar medium.

Melanin pigments production: negative.

Gelatin liquefaction: good liquefaction.

Milk: coagulation, slow peptonization.

Starch: starch hydrolysis.

Antibiotic production: production of kanamycin antibiotic with antifungal activity exhibited by *Streptomyces* species.

Na Cl tolerance: tolerance to 7% and hydrolyzate at 10%.

<u>Carbon utilization</u>: D-glucose, L-arabinose, D-xylose, D- fructose, raffinose and D-mannitol are utilized for growth. No growth or only a trace of growth was recorded with inositol, rhamnose or sucrose.

Streptomyces griseoloalbus

Spore chain morphology: growth made up of long straight, profusely branching filaments. Aerial mycelium produces short and straight sporophores. Spores small, oval.

Spore surface: smooth.

Color of colony: aerial mass color in white group becomes dirty grayish-white.

Melanin pigments production: negative.

Gelatin liquefaction: good liquefaction.

Milk: partially peptonization.

Reduction of nitrate to nitrite: positive.

H₂S production: negative.

Starch hydrolysis: positive.

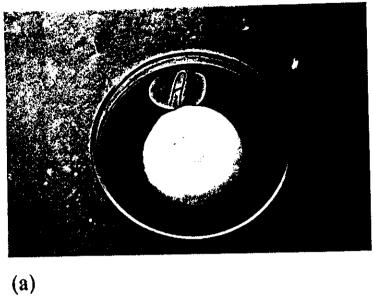
Antibiotic production: producing antifungal grisein (albomycin) yellow group and neomycin complex.

<u>Carbon utilization</u>: D-glucose, D-xylose, L-arabinose, L-rhamnose, D-fructose, D-mannitol, inositol and sucrose are utilized for growth. No growth or only trace of growth was recorded with D-galactose and raffinose.

The description of the above Streptomyces species were cited from Shirling and Gottlieb (1969 &1972) and in Waksman (1961).

The present isolate is similar to *Streptomyces kanamyceticus* in sporophore form, spore surface, aerial mass colour, reverse pigment, melanoid pigment and carbon utilization as (D-glucose, D-mannitol, L-arabinose, D- xylose, D-fructose and raffinose). On the other hand it differs from *Streptomyces kanamyceticus* in that its sporulation heavy when cultivated on malt extract-yeast extract agar. It differs also in carbon utilization for growth sucrose was utilized but rhamnose is doubtful.

From the above mentioned reasons the organism is considered to be a new variety of *Streptomyces kanamyceticus* EHE-68.


2- Isolation and identification of dermatophyte fungi

Isolation of different isolates of dermatophyte fungi by physicians in dermatology department of Kaha general hospital and Benha University hospital, Qluobia Governorate as illustrate in material and methods. Identification of isolated dermatophyte fungi were illustrated in material and methods and in fig. (4, 5 & 6).

The results in fig. (4, a, b &c) illustrate that the color of growth was white to cream with flat raised growth with win-red reverse color and microscopic examination clear that there is microconidia (clavate to pyriform and macroconidia (smooth, thin walled, cylindrical cigar shape). From these results this isolate named *T. rubrum*.

The result in fig. (5, a, b & c) illustrate that color of growth was white to cream with powdery to granular flat surface, yellow brown to reddish-brown reverse color and ultra structure illustrate that there is numerous single celled, spherical to subspherical microconidia with spiral hyphae multicelled macroconidia. From these results this isolate named *T. mentagrophytes*.

The result in fig-(6, a, b & c) illustrate that color of growth was white to cream with spreading to dense cottony flat surface, bright golden-yellow to brown-yellow reverse color and ultra structure illustrate that there is spindle shaped macroconidia with 5-15 cells, which verrucose, thick walled, and they often have a terminal knob. From these results this isolate named *M. canis*.

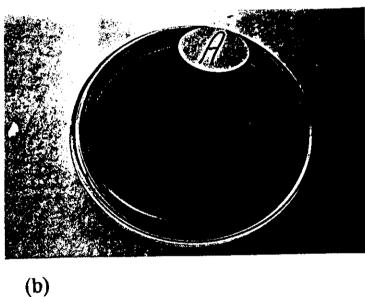
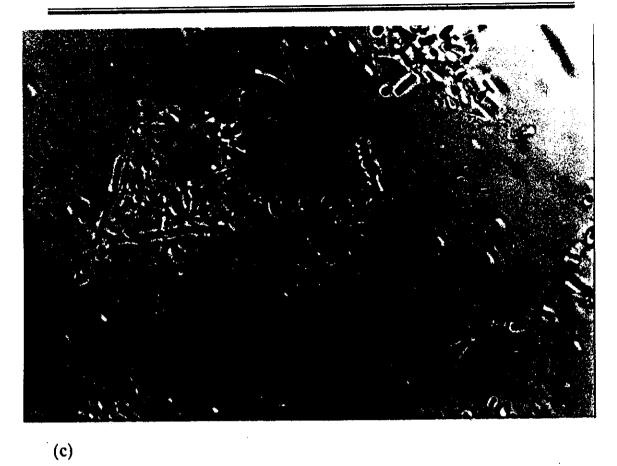
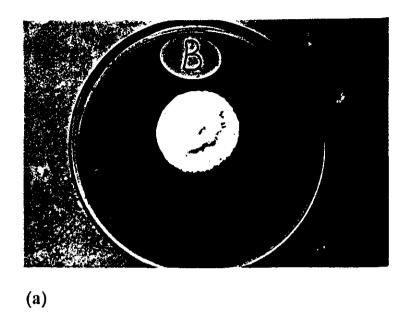




Fig.(4): Culture of T. rubrum are (a) Usually flat to slightly raised, white to cream, suede-like to downy, (b) With a win-red reverse color, (c) The microscopic morphology showing numerous numbers of clavate to pyriform microconidia and moderate numbers of smooth thinwalled, cylindrical (cigar) shaped macroconidia.

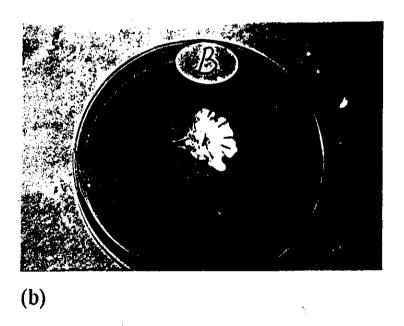
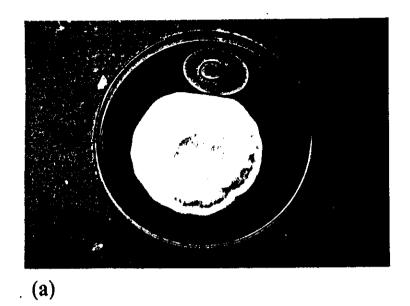
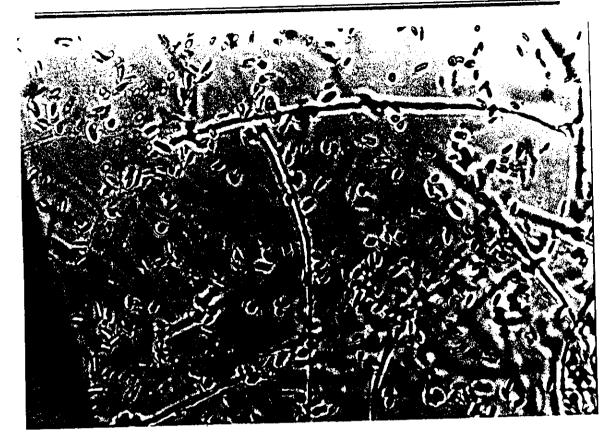



Fig.(5): Cultures of *T. mentagrophytes* are (a) Generally flate, white to cream in color, with a powdery to granular surface. (b) Yellow brown to reddish- brown reverse color. (c) The microscopic morphology showing numerous singles celled, spherical to subspherical microconidia, often in dense clusters, spiral hyphae, multicelled macroconidia may also be present.


(c)

(b)

Fig.(6): cultures of *M.canis* are (a) Flat, spreading white to cream-colored, with dense cottony surface. (b) They usually have a bright golden-yellow to brown-yellow reverse pigment. (c) Microscopic morphology showing macroconidia are typically spindle shaped with 5-15 cells, verrucose, thick walled, and they often have a terminal knob.

(c)

ChapterII

Factors affecting the antifungal biosynthesis by *Streptomyces* kanamyceticus EHE-68

1. Environmental factors

1.1 Effect of different incubation periods on the extracellular protein, antifungal biosynthesis, growth rate and final pH of Sterptomyces kanamyceticus EHE-68

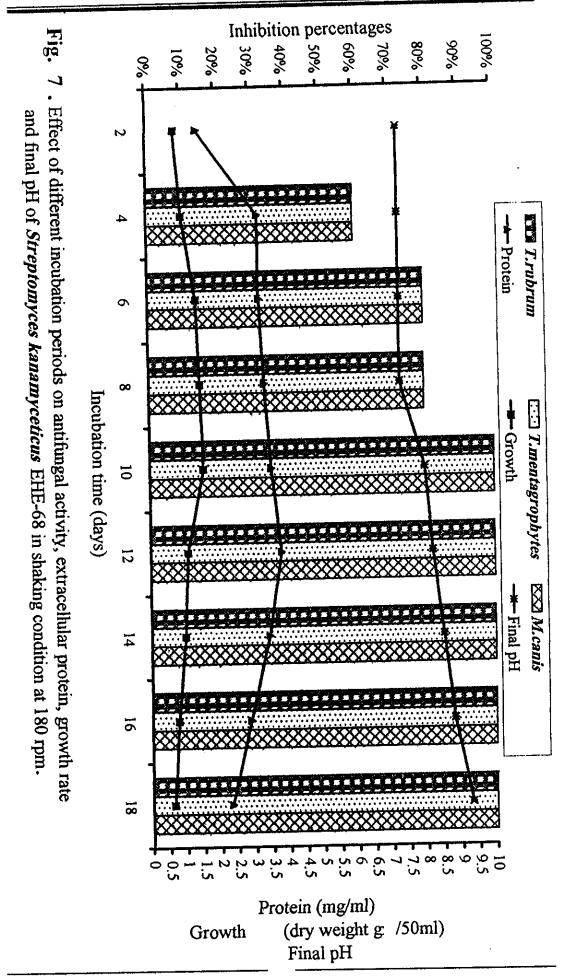
Streptomyces kanamyceticus was cultivated on starch nitrate medium and incubated at 30°C for different incubation times.

This experiment was carried out to elucidate the influence of different incubation periods on growth rate, antifungal production, protein content and final pH of culture filtrate. In this experiment, the culture flasks were incubated at 180 rpm in an electric shaking incubator and at static condition, also. At the end of each incubation period, the culture was filtrated and centrifuged. The filtrate was then used for estimation of antifungal activity, extracellular protein and final pH.

1.1.1 Shaking condition at 180 rpm.

The obtained results in table (10) and figure (7) showed that any prolong in the incubation period was accompanied by an increase in antifungal activity against *T. rubrum*, *T. mentagrophytes* and *M. canis* until a maximum value was obtained after 10 days of incubation. The maximum value of protein was obtained after incubation period for 12 days, then decreased with the prolonged incubation until a minimal value. The results also showed that the values of final pH and growth rate (dry weight g /50ml) were increased with the prolongation of the

incubation period, reaching their maximal values at 18 and 10 days, respectively. It is shown from the experiment that the organism needs 10 days of incubation to obtain the maximum value of antidermatophytes produced by *Streptomyces kanamyceticus* EHE-68.


1.1.2 Static condition

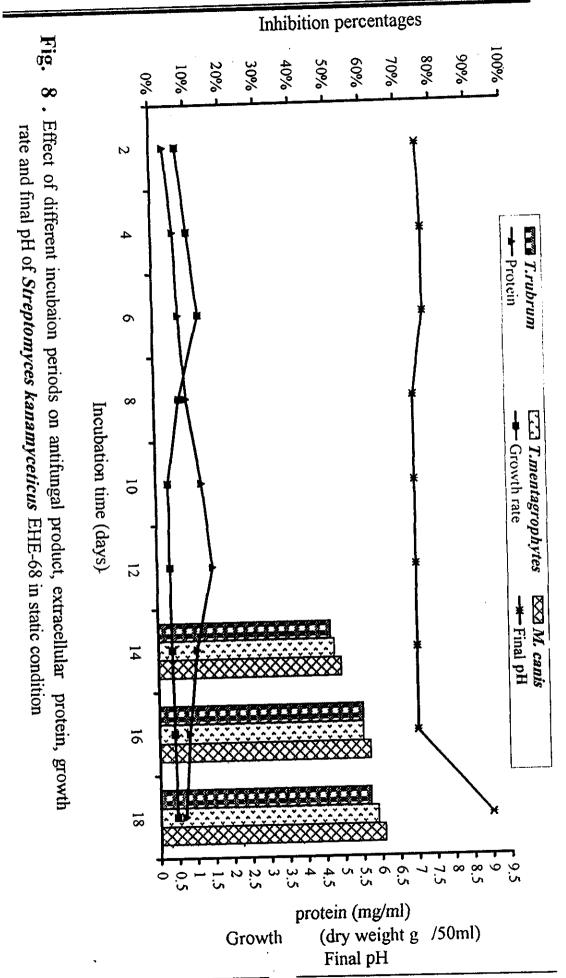
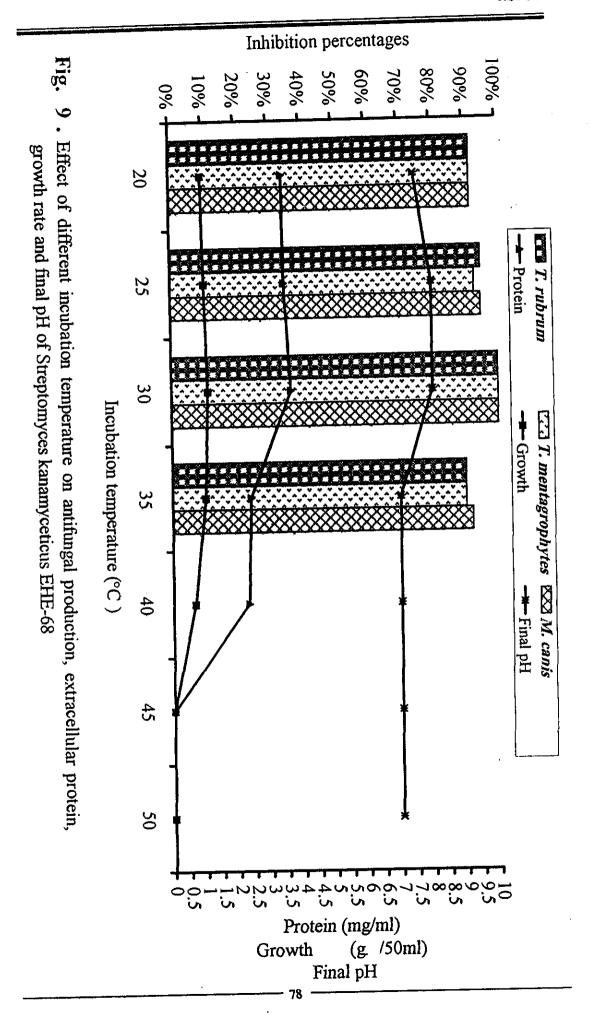

The results obtained in table (11) and figure (8) showed that the maximum growth obtained after 6 days of incubation. The antifungal activity began to produce by 49, 50 and 52% after 14 days of incubation at *T. rubrum*, *T. mentagrophytes* and *M. canis*, receptively. That was increasing antifungal activity with increasing incubation period to reach 60, 62 and 64% at *T. rubrum*, *T. mentagrophytes* and *M. canis*, respectively.

Table 10. Effect of different incubation periods on antifungal biosynthesis, extracellular protein, final pH and growth rate of Streptomyces kanamyceticus EHE-68

(under shaking condition at 180 rpm, at 30°C)

10000	100%	100%	2.510	9.3	0.62	18
100%	1000%	1000			6 :70	1
100%	100%	100%	2.868		0.76	16
100,0	100/6	100%	3.425	8.5	0.98	14
100%	1000/	1000	0.700	4.0	1.08	12
100%	100%	100%	2 708	0 3		
0/ 00 1	100%	100%	3.530	8.0	1.56	10
1000/	1000/					٥
80%	80%	80%	3.354	7.3	1 48	0
000	00/0	0070	3.234	7.3	1.40	6
80%	%008	/000	222	,		4
00%	60%	60%	3.221	7.3	1.02	Δ
600/	()	0.70	1.482	7.3	0.82	2
0%	0%	70/	1 400		(g / 50m)	time (days)
M. canis	mentagrophytes	T.rubrum	(mg/ml)	1 11111	Growth (ury weight)	Incubation
6) of	th inhibition rate (%) of	Growth	Protein	Final nH	Cath (Am woight)	


1.2 Effect of different incubation temperatures on the production of antifungal, extracellular protein, final pH and growth rate of Sterptomyces kanamyceticus EHE-68

Since, the optimum incubation period for antifungal production was 10 days, the next logic step was to investigate the effect of incubation temperature on the antifungal potentiality by the experimental organism. The starch nitrate medium was inoculated with *Streptomyces kanamyceticus* EHE-68 spore suspension, and incubated at 20, 25, 30, 35, 40, 45 and 50°C.

The culture flasks were incubated at 180 rpm. at a shaking incubator for 10 days. After which, antifungal production, extracellular protein, and growth rate were determined as shown in table (12) and figure (9). The results indicate that *Streptomyces kanamyceticus* EHE-68 was able to grow at 20, 25, 30, 35 and 40°C. The growth inhibited completely at 45 and 50°C. It is clear that 30°C was the optimum incubation temperature where the maximum value of antifungal activity, extracellular protein and growth rate were obtained. Then clear drop in antifungal activity, protein amount and growth rate was observed.

Table (12): Average values of antifungal biosynthesis, extracellular protein, final pH and growth of Streptomyces kanamyceticus EHE-68 incubated at different incubation temperatures

7000	Soot	C#	1500	#5	Joon	0,00	3500	20.0	3000	(25°C		20°C		444	Temperature C	30		
	0.0		0.0		0.67		1.01		1.11		1.03	1 00	9.7.	0 07	(g /SUMI)		Crowth (dry weight)	- 1	
	7.0	,	7.0	,	7.0).U		Ø.C			%		7.5			Final pri	11 11	
	0.002	2002	0.0030	2000	2.31//	11111	2.4007	7 4067	0.000	3 6566		3.4814		3.4490	2011	(mg/ml)	Ilotem	Dratain	
	0 %	200	0,0	7,00	0 2	00%	. ,0,0	2,000		100%		95%	257	74.70	07%	T.rubrum		Growt	
		0%		0%		0%		90%		100%		9570	020/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	92%	I. mentagrophytes M. cuitos	1	wth inhibition rate (%) of	
		0%		0%		0%		92%		0,001	1000/	70.70	%20		92%	TAY CREETS	M canic	01	<u></u>

1.3 Effect of initial pH values on the antifungal production, extracellular protein and final pH and growth rate of Streptomyces kanamyceticus EHE-68

This experiment was carried out to study the effect of initial pH values of the cultures medium on the antifungal production, the extracellular protein, final pH and growth rate of *Streptomyces kanamyceticus* EHE-68. The pH values were adjusted to cover the range from 4 to 10 pH before sterilization using 1.0 N HCl and 1.0 N NaOH. Triplicate flasks were used for particular pH value. The agitation speed, incubation period and temperature were those obtained from the previous experiments to be optimal for antifungal production by *Streptomyces kanamyceticus* EHE-68.

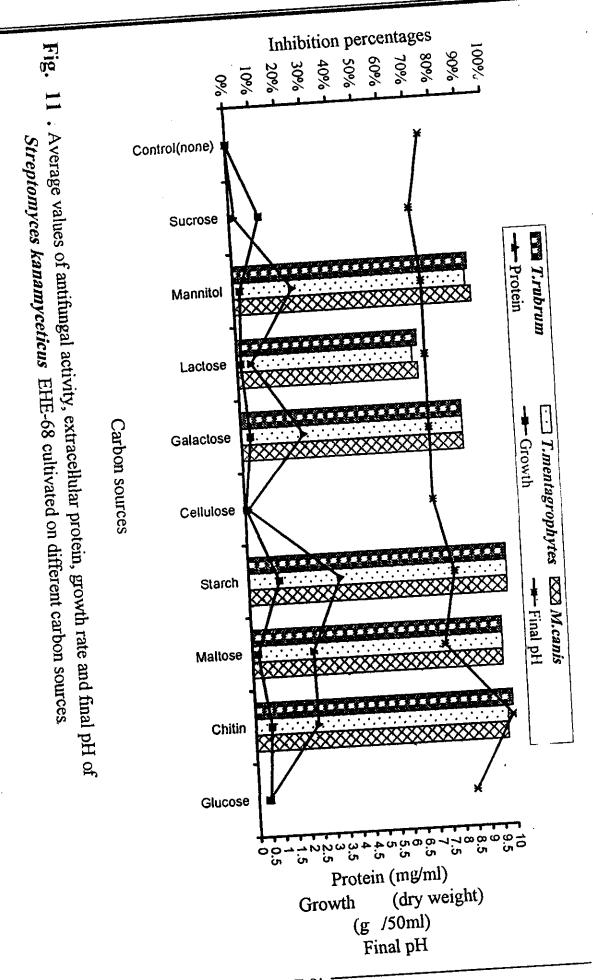
The results presented in table (13) and figure (10) indicate clearly that the optimum pH-value range from 7-9 for maximum production of antifungal compound, extracellular protein and growth of Streptomyces kanamyceticus EHE-68.

The optimal pH value at which the organism formed the highest value of antifungal compound was 7 and stable at 8 and 9 but decreased at 10. Maximum extracellular protein and growth rate was attained at pH 8, increasing or decreasing of pH values having deterioration effect on these parameters.

Table 13. Average values of antifungal biosynthesis, extra-cellular protein, final pH and growth rate at different initial pH values of Streptomyces kanamyceticus EHE-68

			-			
7070	7070	90%	2.5336	8.5	0.71	10
200%	008/	200/				
0,001	100%	100%	2.9602	8.0	0.97	9
100%	1000/	1000/				,
10076	100%	100%	3.3863	8.0	1.00	∞
100%	1000/	200/				
10070	100%	100%	3.2224	8.0	0.98	7
100%	1000/	1000/				
7070	00/0	90%	2.5413	7.5	0.98	6
90%	/000	200/				
00.70	QU%0	80%	2.8044	7.0	0.72	5
7078	000/					
6	0/0	U%	1.0859	6.5	0.68	4
7.0V	70/	20/			(IIIIOC/ B)	
M. canis	T. mentagrophytes	Trubrum	(mø/ml)	•		rrd
) 01	Growth inhibition rate (%) of	Gro	Protein	Final pH	Crowth (dry weight)	ř
100	(0/					

2. Nutritional Requirements


2.1 Effect of different carbon sources on antifungal production, extracellular protein, growth rate and final pH of *Streptomyces kanamyceticus* EHE-68.

In this experiment, the experimental organism (S. kanamyceticus EHE-68) was cultivated on starch-nitrate medium supplemented with different carbon sources. Control treatment was made without any carbon source. Each carbon source was added in a concentration of 2%. Triplicate flasks were made for each treatment.. the culture flasks were adjusted to pH 7.0 and incubated at 30% at shaking incubator (180)rpm for 10 days.

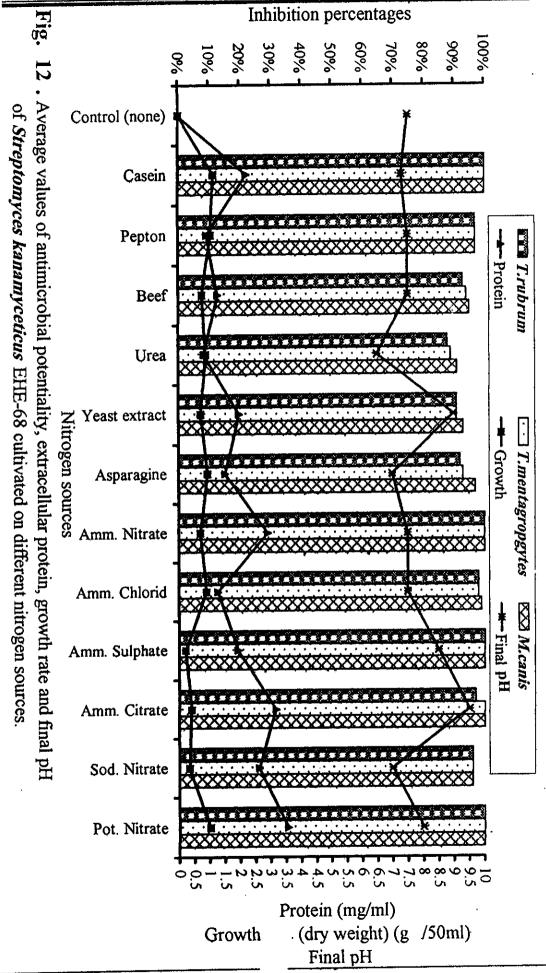
The results are tabulated in table (14) and graphically in figure (11). The ability of the organism to grow and produce antifungal agent appeared to be carbon source specific. Among mannitol, lactose, galactose, starch, chitin, and maltose were found that starch, chitin and maltose the most suitable carbon source for producing antifungal agent by S. kanamyceticus EHE-68.

In presence of starch, the maximal values of the antifungal activity, extracellular protein and growth rate were obtained and the organism failed to produce antifungal compound at sucrose, cellulose and glucose when added to the medium as sole carbon sources.

The sources of carbon on which the organism exhibited the highest values of growth, antifugal production and extracellular protein can be arranged in the descending order starch > chitin > maltose > mannitol > galactose > lactose.

2.2 Effect of different nitrogen sources on antifungal production, extracellular protein, growth rate and final pH of *Streptomyces* kanamyceticus EHE-68

This experiment was adopted in order to clarify the effect of different nitrogen sources on the growth, extracellular protein, final pH and antifungal compound produced by *Streptomyces kanamyceticus* EHE-68. The different nitrogen sources were supplemented separately to nitrogen-free starch-nitrate medium, in nitrogen content equivalent to 0.2 g % potassium nitrate to the modified basal medium.


The nitrogen sources used were organic as casein, peptone, beef-extract, yeast-extract, urea and asparagine and inorganic as ammonium nitrate, ammonium chloride, ammonium sulfate, ammonium citrate, sodium nitrate and potassium nitrate.

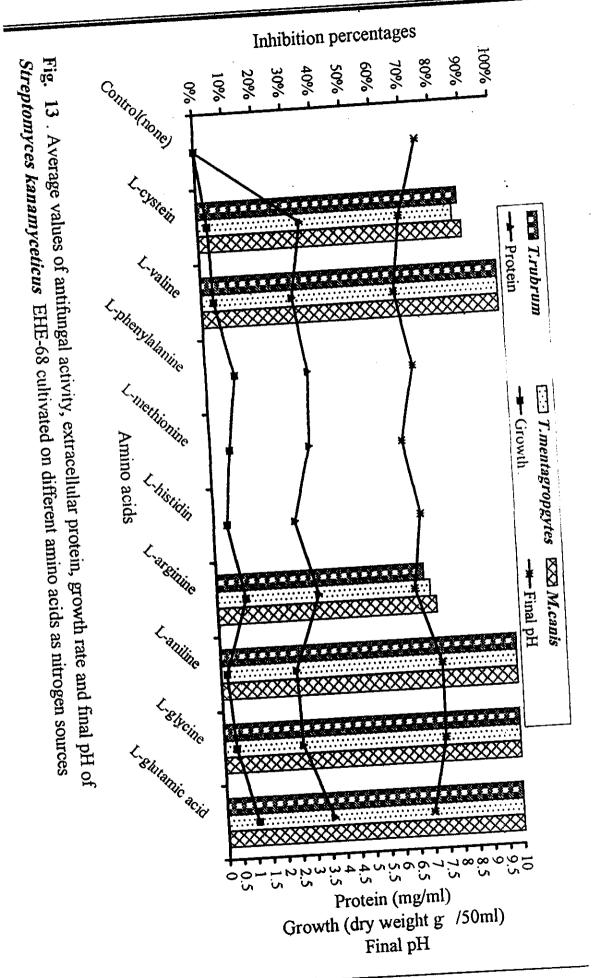
The obtained results, in table (15) and presented graphically in figure (12), illustrate that, *Streptomyces kanamyceticus* EHE-68 was unable to grow or to synthesize the antifungal compound on nitrogen free medium (control). Among the organic sources of nitrogen, casein gave the highest growth value, extracellular protein and antifungal biosynthesis by the experimental organism.

Inorganic sources of nitrogen as ammonium nitrate and potassium nitrate initiate the experimental organism to produced maximal values of antifungal activity aganist *T. rubrum*, *T. mentargophytes* and *M. canis*. On the other hand ammonium and potassium nitrate are the best nitrogen sources for production of extracellular protein among organic and inorganic tested nitrogen sources.

Table (15): Average values of antifungal biosnthesis, extracellular protein, final pH and growth rate of Streptomyces kanamyceticus EHE-68 cultivated on different nitrogen sources

		\				
	Cucuth (day weight)	Final nH	Protein	Grow	wth inhibition rate (%) of	6) of
Nitrogen sources	Growiii (u. y wcigary)	, san a san	(mg/ml)	T. rubrum	T. mentagrophytes	M. canis
Casein	1.15	7.3	2.2306	100%	100%	100%
Dentone	1.06	7.5	0.9291	97%	97%	98%
1 optone		7.5	1 7805	93%	94%	95%
Beef-extract	0.78	7.5	1.2893	9370	909/	010/
Urea	0.90	6.5	0.8394	88%	89%	7170
Yeast-extract	0.73	9.0	1.9861	91%	91%	93%
	0.00	70	1 5333	92%	93%	97%
Asparagine	0.73		20252	1000/	100%	100%
Amm. nitrate	0.71	·.5	2.9233	100,0	10070	200
Amm chloride	0.91	7.5	1.2876	98%	98%	99%
A	0.22	8.5	1.9405	100%	100%	100%
Amin. Surace		2	2 1760	07%	100%	100%
Amm. citrate	0.41	9.5	3.1/69	9170	10070	000
Sodium nitrate	0.34	7.0	2.6131	96%	95%	90%
Dataccium nitrata	1.02	8.0	3.5566	100%	100%	100%
F Olassidin minare		ì	0 0000	700%	0%	0%
Control (none)	0.01	7.5	0.0000	0/6		

Amino acids as nitrogen sources


This experiment was adopted in order to clarify the effect of different amino acids as nitrogen sources on the growth, extracellular protein, final pH and antifungal compound produced by *Streptomyces kanamyceticus* EHE-68. The different nitrogen sources were supplemented separately to nitrogen free medium, in nitrogen content equivalent to 0.2 % potassium nitrate to the modified basal medium.

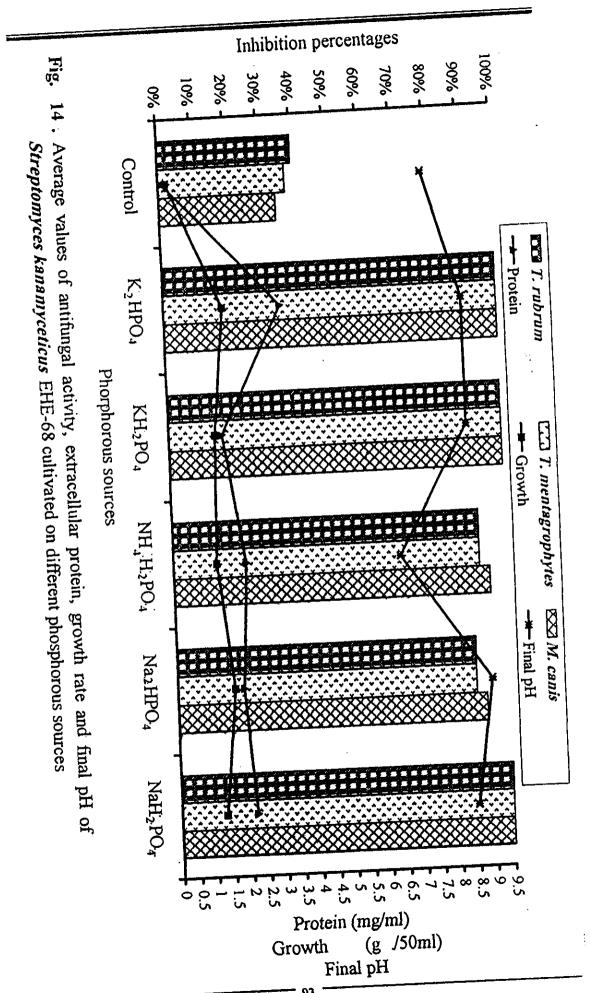
Amino acids used were L- cystein, L- valine, L- phenylalanine, L- methionine, L- histidine, L- arginine, L-aniline, L-glycine and L- glutamic acid.

The obtained results are in table (16) and graphically in figure (13) illustrating that, the *Streptomyces kanamyceticus* EHE-68 was unable to grow or to synthesis the antifungal compound on nitrogen free medium (control). Among the amino acids tested, L-glutamic acid gave the highest growth value (1.06 g /50ml), extracellular protein (3.6110 mg/ml) and antifungal biosynthesis compound against all tested dermatophyte fungi by the experimental organism. On the other hand, L-phenylalanine, L-methionine and L-histidine were completely inhibited biosynthesis of antidermatophyte compound produced by *St. kanamyceticus* EHE-68.

Table 16. Average values of antifungal biosynthesis, extracellular protein, final pH and growth rate of Streptomyces kanamyceticus EHE-68 cultivated on different amino acids as nitrogen sources

		Linol nu	Protein	Grow	wth inhibition rate (%) of	o) of
Amino acides	Growtn (ary weight)	Lingi paa	(mg/ml)		T. mentagrophytes M. canis	M. canis
	á	60	3 4457	88%	86%	89%
L-Cystein	0.33	0.8	7,44,7	00/6	1000/	1000/
1Valine	0.41	6.5	3.0510	100%	100%	100,0
		3	2 4457	0%	0%	% -
L-Phenylalanine	0.98	/.0	5.4437	0 / 0		20/
Methionine	0.66	6.5	3.3564	0%	0%	0%
T 141000000		2	27500	\%\ \	%0	0%
L-Histidin	0.45	7.0	2./300	0,0		240/
Arcinino	0.98	6.7	3.4456	70%	72%	/4/0
L-Digitino		2	2 5523	100%	100%	100%
L-Aniline	0.21	7.0	2.3333	100,0		2000
I glycine	0.41	7.5	2.6660	100%	%001	100%
20.7		1	3 6110	100%	100%	100%
L-glutamic acid	1.06	7.0	0.110	9,001		20
Control (none)	0.01	7.5	0.0000	0%	0%	0%

2.3 Effect of different phosphorus sources on antifungal production, extracellular protein, growth rate and final pH of Streptomyces kanamyceticus EHE-68


In this experiment a basal nutrient medium was prepared free of phosphorous source and supplemented by equimolecular levels of phosphorous sources to test its influence on antifungal compound production, extracellular protein, growth rate by *Streptomyces kanamyceticus* EHE-68.

The used phosphorous sources were as follows: potassium monobasic phosphate, potassium dibasic phosphate, sodium monobasic phosphate, sodium dibasic phosphate and ammonium phosphate.

The obtained results recorded in table (17) and graphically in figure (15) showed that, the *Streptomyces kanamyceticus* EHE-68 was not grow well in the absence of phosphorous sources (control), synthesis of antifungal decreased also. The most favorable phosphorous source for antifungal biosynthesis, extracellular protein and growth rate was K_2HPO_4 . Generally, the different phosphorous sources can be arranged according to antifungal activity as follow: $K_2HPO_4 > KH_2PO_4 = NaH_2PO_4 > NH_4H_2PO_4 > Na_2HPO_4$, but in the order of extracellular protein production was as follows: $K_2HPO_4 > NaH_2PO_4 > Na$

Table 17. Average values of antifungal biosynthesis, extracellular protein, final pH and growth rate of Streptomyces kanamyceticus EHE-68 cultivated on different phosphorous sources

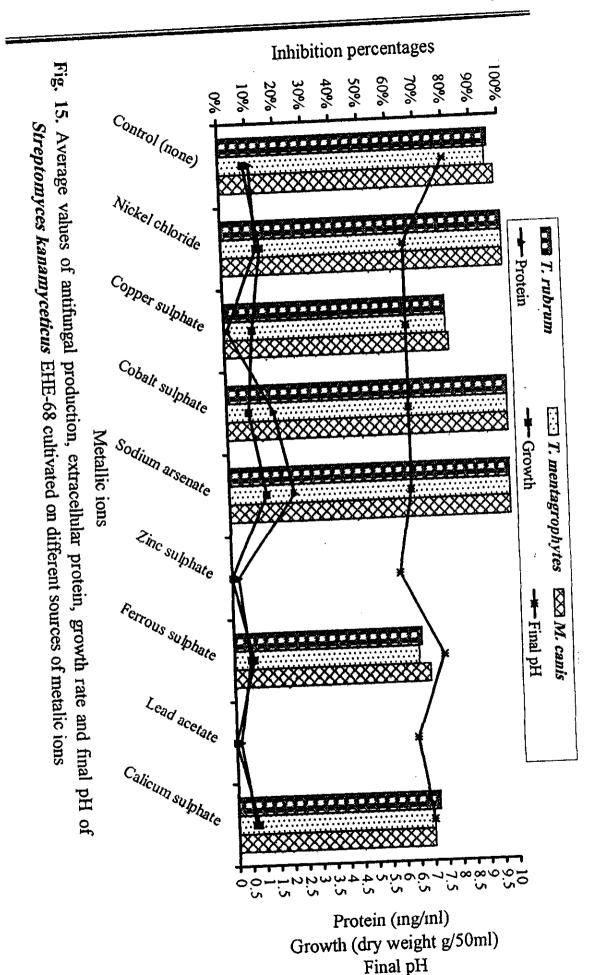
		Einal nH	Protein	Grow	Growth inhibition rate (%) of	o) of
Phosphorous	Growth (dry weight)	THE THEFT	(mo/ml)	Trubrum	T.mentagrophytes	M.canis
sources	(Imuc/B)		3 22 7	100%	100%	100%
K ₂ HPO ₄	1.67	%	3.3240	10070		
			1 5312	100%	100%	100%
KH,PO,	1.32	8.0	1.3213	0,00T		
12227		2,2	2 07/18	97%	92%	95%
NH,H,PO	1.23	0.0	2.0740	76.76		
7 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			1 0606	200%	90%	93%
Na ₂ HPO ₂	1.64	9	1.0090	7070		
7.00			2 1 272	100%	100%	100%
NaH.PO.	1.29	×.	2.10/3	10070		
+7x m) T		25	1 01/2	00%	88%	92%
Control	0.78	7.5	1.0140	20/0	0076	
				•		

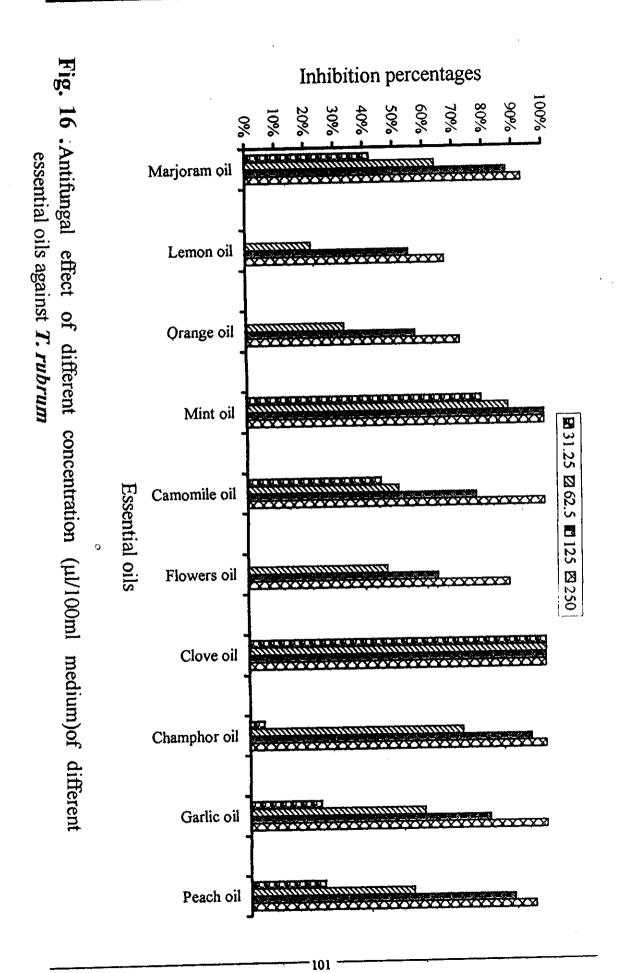
2.4 Effect of different metallic-ions on anti-microbial potentiality, extracellular protein, growth rate and final pH of Streptomyces kanamyceticus EHE-68

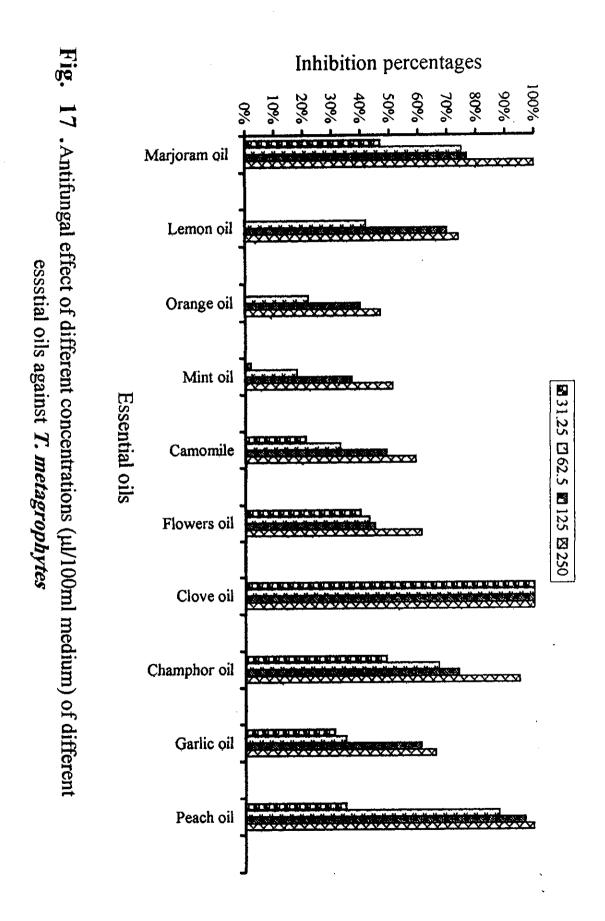
It is well known that metallic-ions play an important role in growth and rate of germination of microbial spores, as well as shortening the sporophore formation time. The chemical elements function as essential nutrients for cell synthesis, and as regulatory mechanisms for various transformations that take place in the living system. Different metallic-ions were added to the starch nitrate medium in (1mg/100ml). These elements were nickel chloride, copper sulphate, cobalt chloride, sodium arsenate, zinc sulphate, ferrous sulphate, lead acetate and calcium chloride. Triplicate flasks were made for each particular treatment. Control treatment was maintained in parallel. General culture conditions were carried out as usual. At the end of the incubation period, the cultures were filtered and centrifuged. The culture filtrates were used for estimation of antifungal activity and protein amounts. The results recorded in table (18) and figure (16) indicate that nickel chloride, sodium arsenate induced maximum value of antifungal potentiality of the experimental organism, but the all remaining metallic-ions induced inhibitory effects on antifungal agent. On the other hand, the maximum amount of protein was obtained in the presence of sodium arsenate.

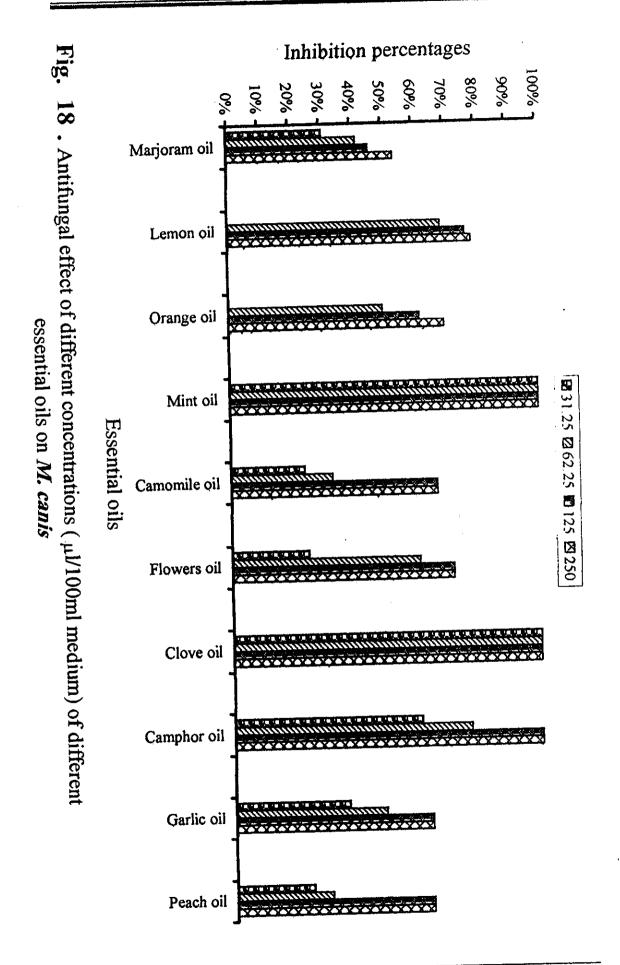
Table 18. Average values of antifungal biosynthesis, extracellular protein, final pH growth rate of Streptomyces kanamyceticus EHE-68 cultivated on different metallic-ions

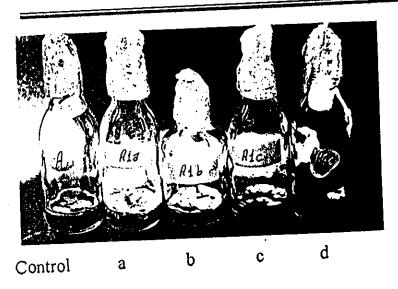
			1			-
		11 11	Drotein	Gro	rowth inhibition (%) 01	01
Metallic-ions	Growth (dry weight)	rmai ph	r i otem		T. mentagrophyes	M. canis
1	(g/50ml)	, n	1 2394	100%	100%	100%
Nickel chloride	1.38	٥٠٠	1.20		300/	2000
AIOVOI OTIVOTA		٧ ٧	0 1172	79%	79%	8070
Conner sulphate	1.00	0.0	0.11.2			1000/
Copper surging		2,2	1 6739	100%	100%	100%
Cobalt sulphate	0.79	0.0	1.0757		2000	1000/
	1 22	6.5	2.3338	100%	100%	100,0
Sodium arsenate	1.55	;		200	700%	0%
	0.00	6.0	0.2293	0%	0	
Zinc sulphate	0.00		0 5083	67%	66%	70%
Earrous sulphate	0.71		0.5005			
Lemon ambume			0 1754	0%	0%	0%
Lead acetate	0.00	0.0	0.177		309/	700%
	0.73	7.0	0.6257	72%	/0/0	7070
Calcium sulphate	0,70		1 0000	06%	95%	98%
Control (none)	0.88	×.c	1.0772			




Table 19. Effect of different concentrations of essential oils on the growth of tested dermatophyte fungi

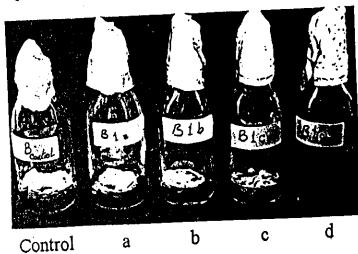
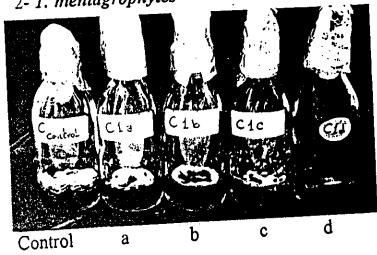

Essential oils with different concentrations	T.rubrum	Percentages of growth inhibition of T.mentagrophytes	n of M. canis
(μl/100ml media)			
31.75	42%	47%	31%
62.50	64%	75%	42%
125 00	88%	77%	46%
250.00	93%	100%	54%
Lemon oil			
31.25	0%	0%	0%
62.50	22%	425	09%
125.00	55%	70%	77%
250.00	67%	74%	19%
Orange oil			00/
31.25	0%	0%	0%
62 50	33%	22%	50%
125.00	57%	40%	62%
250.00	72%	47%	70%
Mint oil			1000
31.25	79%	2%	100%
05 69	88%	18%	100%
125.00	100%	37%	100%

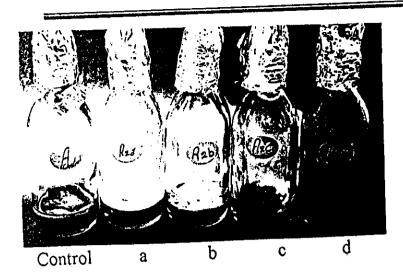

250.00	125.00	62.50	31.25	Camphor oil	250.00	125.00	62.50	31.25	Clove oil	250.00	125.00	62.50	31.25	Flowers oil	250.00	125.00	62.50	31.25	Chamomile oil	250.00
100%	95%	72%	5%		100%	100%	100%	100%		88%	64%	47%	0%		100%	77%	51%	45%		100%
95%	74%	67%	49%		100%	100%	100%	100%		61%	45%	43%	40%		59%	49%	33%	21%		51%
100%	100%	77%	61%		100%	100%	100%	100%		72%	72%	61%	25%		67%	67%	33%	24%		100%


:

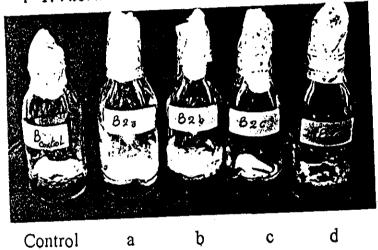
		20/0	
0	100%	%990	250 00
, , ,	9/%	89%	125 00
8	0070	33%	62.50
ယ	88%	/023	0.110
0%C7	35%	25%	
25			Peach oil
			230.00
04	66%	100%	00 030
/0/2		0170	125.00
64	61%	010/	01:00
	3370	59%	62 50
490	7020		01.20
0.	31%	24%	l
27	210/		Carne on

1- T. rubrum

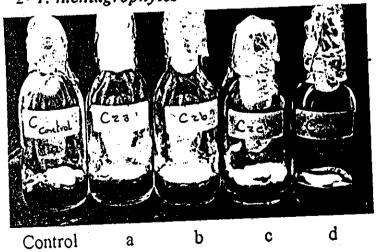




Fig.(15):
Effect of different
concentrations of essential
oils on growth of tested
dermatophytes (from A-J).

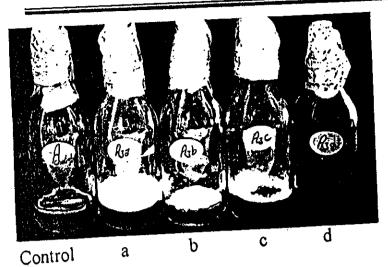
2- T. mentagrophytes



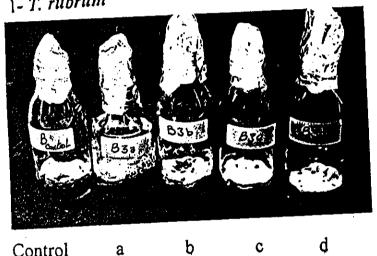
3- M.canls


A: Inhibition of growth of (1,2 &3) at different concentrations of marjoram oil a (31.25), b (62.5), c (125) & d (250 µl/100ml).

1- T. rubrum



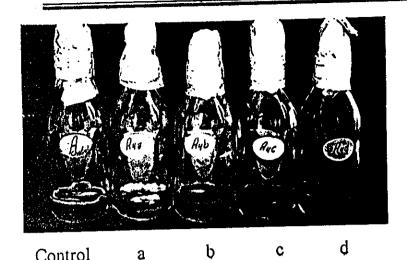
2- T. mentagrophytes

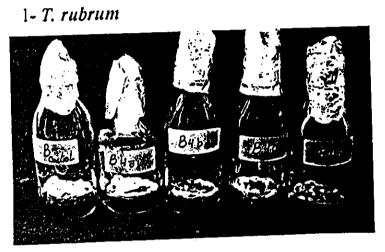


3- M. canis

B: Inhibition of growth of (1,2 &3) at different concentrations of Lemon oil a (31.25), b (62.5), c (125) & d (250 μ l/100ml).

1- T. rubrum


Control a b
2- T. mentagrophytes

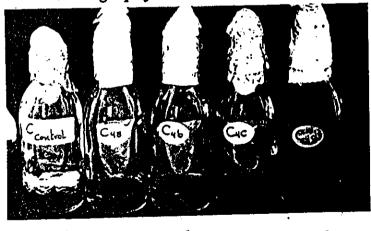

Control a b c d

3- M.canis

C: Inhibition of growth of (1,2 &3) at different concentrations of Orange oil a (31.25), b (62.5), c (125) & d (250 μ l/100ml).

Control

Control


a

b

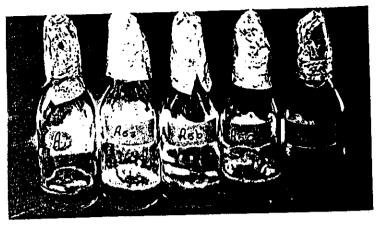
C

d

2- T. mentagrophytes

Control

a

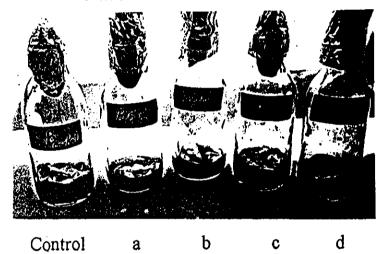

b

C

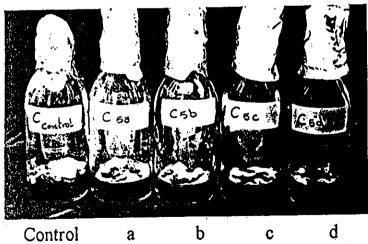
d

3- M.canis

D: Inhibition of growth of (1,2 &3) at different concentrations of Mint oil a (31.25), b (62.5), c (125) & d (250 μ l/100ml).

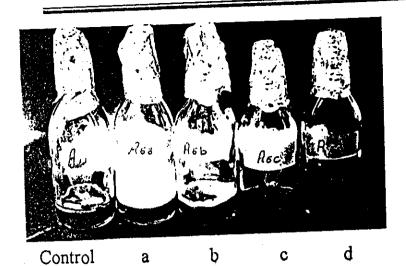

Control

a

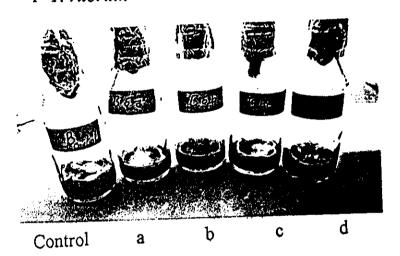

b

ď

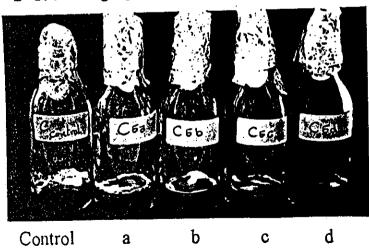
1- T. rubrum



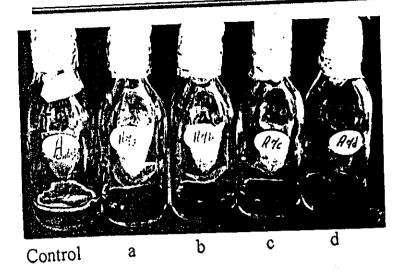
2- T. mentagrophytes



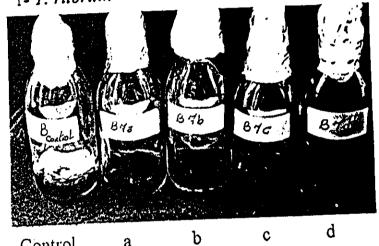
3- M.canis


E: Inhibition of growth of (1,2 &3) at different concentrations of Camomile oil a (31.25), b (62.5), c (125) & d (250 μ l/100ml).

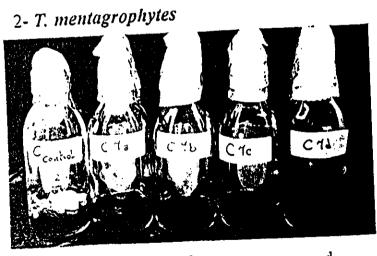
1- T. rubrum



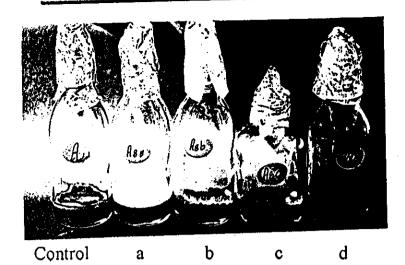
2- T. mentagrophytes

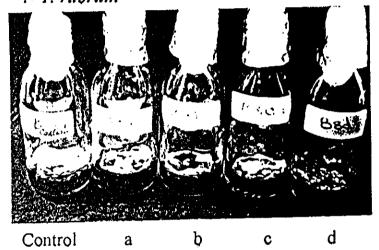


3- M.canis

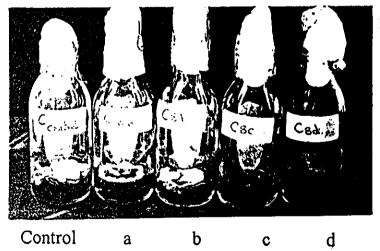

F: Inhibition of growth of (1,2 &3) at different concentrations of Flowers oil a (31.25), b (62.5), c (125) & d (250 μ l/100ml).

1- T. rubrum

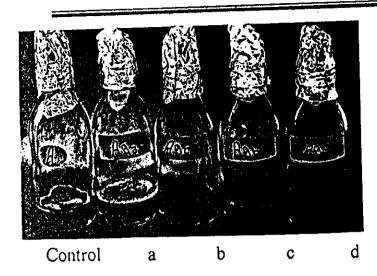

Control a b


Control a b c d

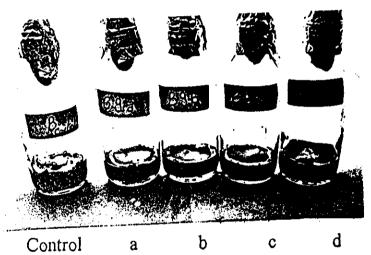
3- M. canis


G: Inhibition of growth of (1,2 &3) at different concentrations of Clove oil a (31.25), b (62.5), c (125) & d (250 μ V100ml).

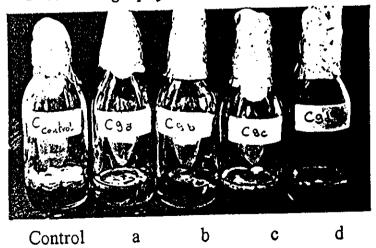
1- T. rubrum



2- T. mentagrophytes



3- M.canis


H: Inhibition of growth of (1,2 &3) at different concentrations of Camphor oil a (31.25), b (62.5), c (125) & d (250 µl/100ml).

1- T. rubrum

2- T. mentagrophytes

3- M.cani

I: Inhibition of growth of (1,2 &3) at different concentrations of Garlic oil a (31.25), b (62.5), c (125) & d (250 μ V100ml).

2. Effect of different concentrations of propolis on the growth rate of tested dermatophtye fungi

Table (20) and figure (20 & 21) indicates that propolis (PEE) have an inhibitory effect on the growth rate of *M. canis* at the following concentrations (50, 100, 200, 300, 400, 800 mg/100ml) by (4%, 29%, 35%, 49%, 56%, and 100%, respectively).

Propolis at concentrations (50, 100, and 200 mg/100ml) had no effect on *T. mentagrophytes*, but at concentrations (300 & 400 mg/100ml) it had inhibition percent (37% & 64%, respectively). Finally, the complete inhibition was obtained at concentration (800 mg/100ml) which gave inhibition percent 100%.

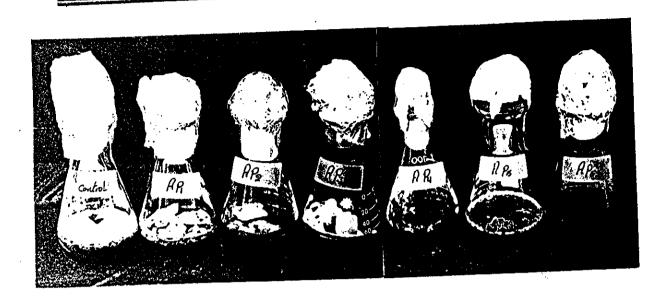
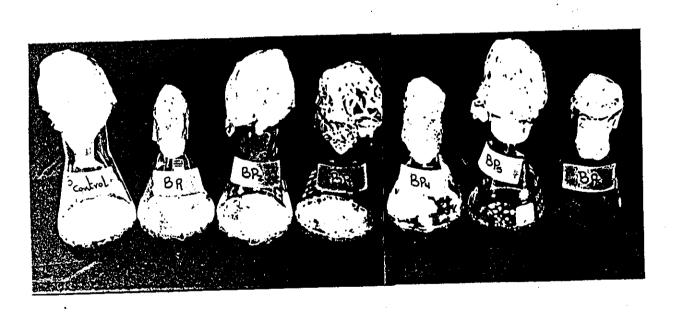
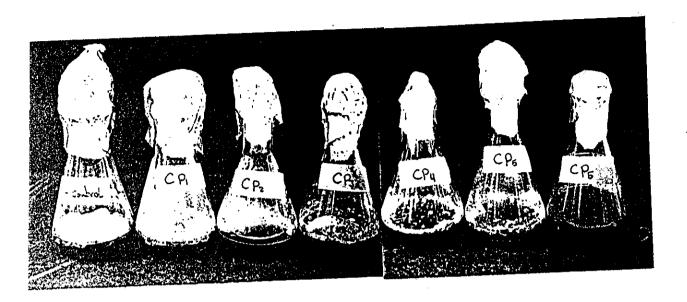

The growth of *T.rubrum* affected by propolis at concentrations (50, 100, 200, 300, 400, 800 mg/100ml) by inhibition percentages (20%, 48%, 53%, 62%, 78%, and 100%, respectively).

Table 20. Effect of different concentration of propolis (bee glue) on the growth of tested


dermatophytes fungi	ingi	r_L:Lidion nercentages	
Concentration of	T. rubrum	T. mentagrophytes	M. canis
propolis (g/100mi		08/	4%
medium)	20%	0%	
50		%00	29%
100	48%		3 < 0/2
	53%	0%	
200		37%	49%
300	62%		269%
	78%	64%	
400		1000/	100%
9008	100%	100/0	

Inhibition percentages Fig. 20. Antifungal effect of different concentrations of propolis ethanolic extract (propolis المراسمة 80%-90%-70%-60%-50%-40%-30% mg/100ml medium) T.rubrum ₩ 50 □ 100 T. mentagrophytes ■ 200 図 300 図 400 図 800 M. canis

116



f d b Control 1- T. rubrum

d c b Control

2- T. mentagrophytes

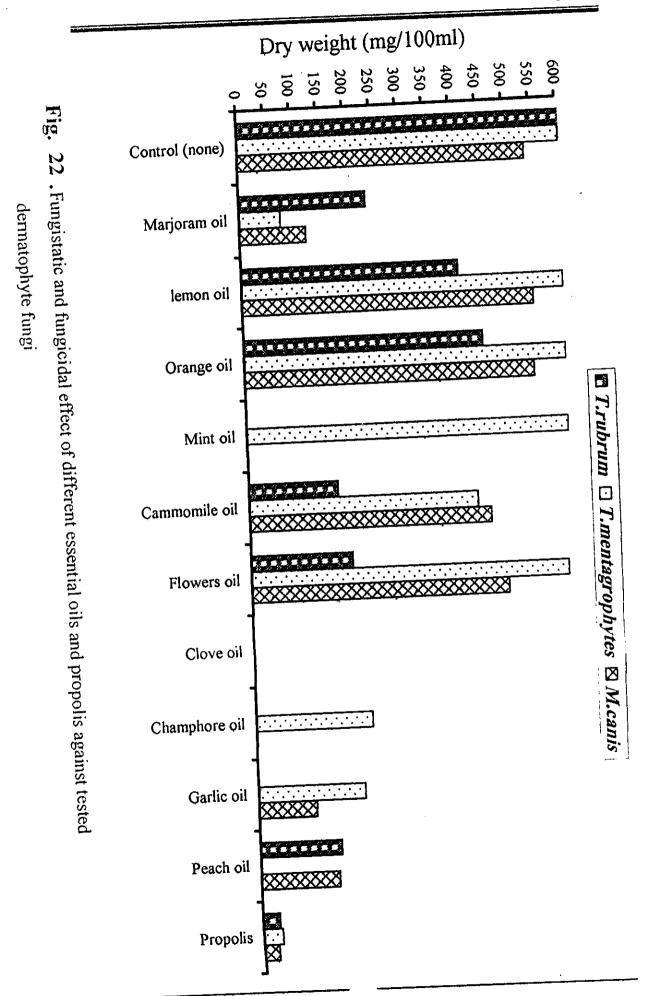
Control a b c d e f 3-M. canis

Fig(19): Effect of different concentrations of propolis (a,b,c,d,e &f) on the growth rate of (1, 2 &3).

- (a) = 50 mg/100 ml medium
- (b) = 100 mg/100 ml medium
- (c) = 200 mg/100 ml medium
- (d) =300 mg/ 100 ml medium
- (e) =400 mg/ 100 ml medium
- (f) =800mg/100ml medium

3. Fungistatic and fungicidal activity of tested essential oils and propolis against *T. rubrum*, *T. mentagrophytes*, and *M. canis*.

The results of table (21) and figure (22) illustrated the fungicidal and fungistatic nature of the tested essential oils and propolis. Generally, almost of tested essential oils exhibited notable fungicidal and fungistatic activity against the tested fungi.


No mycelial dry weight was determined or detected as a result of exposure to clove oil at (250 µl/100ml) which means that it has a highly fungicidal effect on all tested dermatophyte fungi. Mint oil and champhor oil had fungicidal effect on *T. rubrum* and *M. canis*, but it had no effect on *T. mentagrophytes*. While garlic oil showed high fungicidal effect on *T. rubrum* but not on *T. mentagrophytes* and *M. canis*, as well as peach oil had the fungicidal effect on *T. mentagrophytes* and *M. canis*.

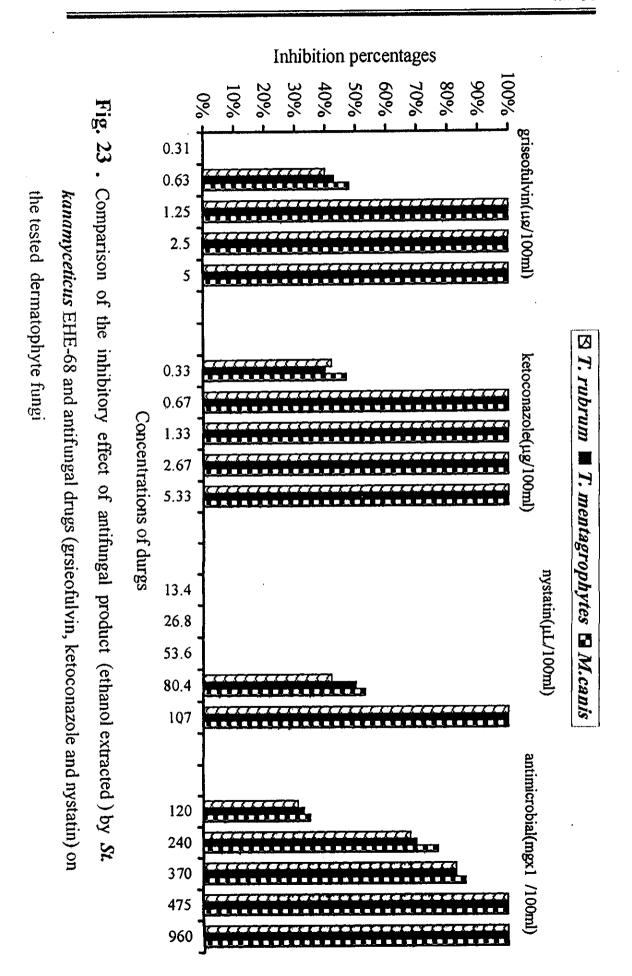
On the other hand both lemon oil and orange oil had no fungistatic effect on both T. mentagrophytes and M. canis.

Propolis with the concentration of (800 mg/100ml) had a very strong fungistatic effect on *T. rubrum*, *T. mentagrophytes*, and *M. canis*.

Table 21. Fungistatic and fungicidal effect of different essential oils and propolis against the tested dermatophytes fungi.

	Q					
Fesential oils			Dry weight (mg / 100)	[00ml medium)		
ESSCHIALORS	T. rubrum	Activity	T. mentagrophytes	Activity	M. canis	Activity
(250 µL/100ml medium)						
Control	650		660		340	
Marjoram oil	238	fungistatic	77	fungistatic	125	fungistatic
Lemon oil	408	fungistatic	646	fungistatic	548	fungistatic
Orang oil	450	fungistatic	671	fungistatic	545	fungistatic
Mint oil	,	fungicidal	651	fungistatic	•	fungicidal
Chamomile oil	168	fungistatic	431	fungistatic	455	fungistatic
Flowers oil	192	fungistatic	597	fungistatic	484	fungistatic
Clove oil	•	fungicidal	1	fungicidal	•	fungicidal
Champhor oil	1	fungicidal	219	fungistatic	-	fungicidal
Garlic oil	•	fungicidal	201	fungistatic	109	fungistatic
Peach oil	153	fungistatic	-	fungicidal	148	fungistatic
Propolis	32	fungistatic	36	fungistatic	28	fungistatic
(-)= No growth						

4. Effect of different concentrations of commercial antifungal drugs (griseovulvin, Ketoconazole and nystatin) on the growth rate of tested dermatophyte fungi, compared with product of *S. kanamyceticus* EHE-68


The results in table (22) and figure (23) illustrate that the MFCs of griseofulvin, ketoconazole and nystatin against T. rubrum, T. mentagrophytes and M. canis were obtained under the best conditions (100% growth inhibition, 14 days of incubation and incubation temperature at 30°C). In general, the three drugs had high antifungal activity against the tested dermatophyte fungi. Over all, ketoconazole was the most active antifungal, showing the lowest MFC (MFC = 0.666 μ l/100ml medium). Griseofulvin and nystatin were showed good antifungal activity (MFCs= 1.25 μ g and 107.2 μ l /100ml medium, respectively).

Also, the crude antifungal product (ethanol extracted) by St. kanamyceticus EHE-68 gave 100% growth inhibition of T. rubrum, T. mentagrophytes and M. canis by MFC equal to 475 mg/100ml medium.

Table 22. Comparison of the inhibitory effects of antifungal product (ethanol extracted) and antifungal drugs (griseofulvin, ketoconazole and nystatin) on T. rubrum, T. mentagrophytes and M. canis

	- 1	
T rubrum		M. canis
h •		
	7%n	0%
0%	43%	48%
40%	1000/	100%
100%	100%	70001
100%	100%	100%
1000%	100%	100%
100/6		
	40%	47%
42%	1005	100%
70001	100%	100%
100%	100%	100%
1000%	100%	100%
100/6	·	
707	0%	0%
0.00	0%	0%
000	0%	0%
47%	50%	53%
2001	100%	100%
10076 (ma/10/ml)		
y St. Kanamyceucus (mg) 100mi)	33%	35%
200/	70%	77%
8,0%	83%	86%
%000I	100%	100%
100%	100%	100%
	ntifungal drugs with different bncentrations iriseofulvin (μg/100ml) iriseofulvin (μg/100ml)	Inhibition T. menta 11 11 11 11 11 11 11 11 11

123

124

5. Minimum fungalicidal concentration (MFCs) of some antifungal drugs, essential oils and antidermatophyte product by *St. kanamyceticus* EHE-68

Minimum fungalicidal concentrations (MFCs) were collected from previous results and illustrated in table (23) and fig (24) to comparison between MFCs of antifungal drugs used for treatment of fungal disease, essential oils used as antifungal and antidermatophyte product of tested St. kanamyceticus EHE-68 not concentrated and not purified. The results obtained illustrate that, the lowest MFCs of antifungal drugs was ketoconazol followed by griseofulvin and nystatin as antifungal drugs. Clove oil is the lowest MFCs of essential oils were used for all tested dermatophyte fungi. MFCs of propolis was determined at 80 mg/10 ml medium for all tested dermatophyte fungi. Non concentrated and non purified product of St. kanamyceticus EHE-68 was effected on growth of tested dermatophyte fungi but it was gained the highest MFC compared with antifungal drugs, essential oils and propolis. In future studying, I hope to concentrate and purify the product of St. kanamyceticus EHE-68 to obtain good results to use for treatment of dematophyte fungi diseases.

Table 23. Minimum fungal concentrations(MFCs) of antifungal drugs, essential oils propolis and antifungal product of S. kanamyceticus EHE- 68

	o ·		3	
Antifungal tests	Ž		MFCs concentration of	
Annungaricaco	· 	T. rubrum	T. mentagrophytes	M. canis
Griseofulvin	(µg/100ml)	1.25	1.25	1.25
Ketoconazole	(µg/100ml)	0.666	0.666	0.000
Nystatin	(ml/100ml)	107.2	107.2	107.2
Nystatin	(11 /100ml)	31.25	31.25	31.25
CIOAC OTI		106		31.25
Mint oil	(µl /100ml)	125	ı	
Camomile	(µl /100ml)	250	1	
Champhor oil	(µl /100ml)	250	· ·	125
7		050	1	1
Garlic oil	(µl /100ml)	200	25	
Peach oil	(اس1/100سل)	ì	250	
Marioram oil	(ul /100ml)	•	250	'
	(m. /10ml)	80	80	80
Propolis	(mg/10ml)	00	775	475
Antifung (ethanol extracted)	Antifungal product (ethanol extracted) by S. kanamyceticus	475	4/5	1,0
EHE-68	(mg/10 m1)			

⁽⁻⁾⁼ Not detected

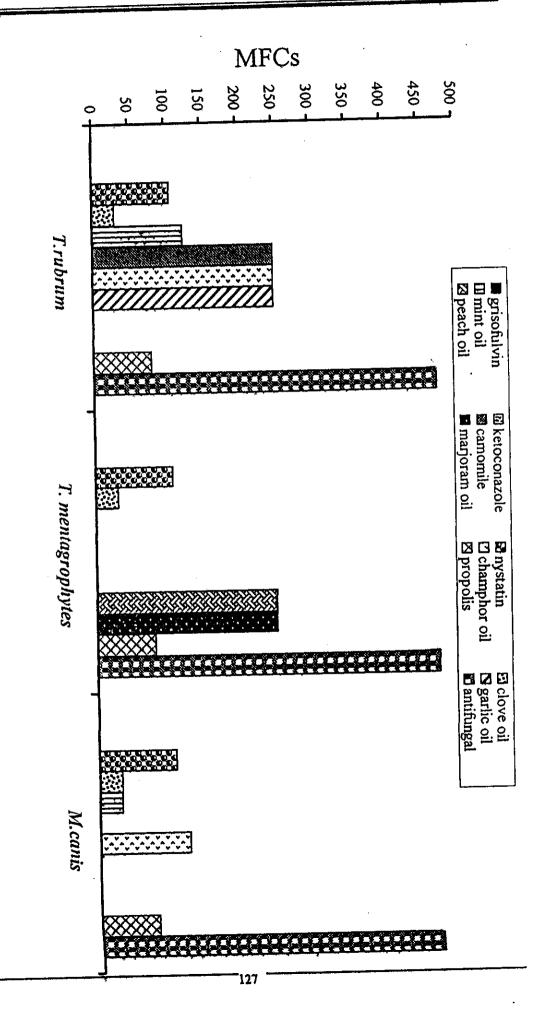


Fig. 24. Comparison between MFCs of antifungal drugs, essential oils, propolis and antifungal product by St. kanamyceticus EHE-68