SUMMARY

SUMMARY

The thesis entitled "Production of Some High Specific Activity Radioisotopes" comprises three chapters; introduction, experimental, and results and discussion.

Chapter 1, introduction, includes brief accounts on nuclear fission reactions, uranium targets, chemistry of uranium and fission products, chemical separation concepts, review of some fission-products separation procedures, and radiochemical processing plants.

Chapter 2, which includes the experimental work, is divided into three main parts: (1) preparation and irradiation of the uranium targets, (2) chemical processing, including (i) digestion of the irradiated uranium targets, (ii) separation and recovery of radioiodine, (iii) separation and recovery of radioruthenium, (iv) batch separation of Sr, Ba, La, and Ce radionuclides, (v) batch separation of Zr, Nb, Te, and Np radionuclides, (vi) separation and recovery of radiocesium, and (vii) recovery of radiomolybdenum, and (3) quality control investigations of the recovered radioisotopes, including the separation yield, recovery yield, radionuclidic purity, radiochemical purity, and/or pH-value. It includes also a list of chemicals and a description of the equipments and apparatuses used in the present work.

Chapter 3 presents results and discussion. When uranium targets (uranium trioxide and uranyl nitrate hexahydrate) were irradiated in the 22 MW-water-cooled ETRR-2 Research Reactor (Egypt) for 4 h at a thermal neutron flux of 1×10^{14} n/cm².s, cooled for one week, and analyzed by γ -ray spectroscopy, the following radionuclides were appeared: ⁹⁵Zr ($T_{1/2} = 64.02$ d), ⁹⁷Zr ($T_{1/2} = 16.9$ h), ^{97m}Nb ($T_{1/2} = 58.1$ s), ⁹⁷Nb ($T_{1/2} = 1.23$ h), ⁹⁹Mo ($T_{1/2} = 2.75$ d), ^{99m}Tc ($T_{1/2} = 6.01$ h), ¹⁰³Ru ($T_{1/2} = 39.27$ d), ¹³¹I ($T_{1/2} = 8.04$ d), ¹³²I ($T_{1/2} = 2.28$ h), ¹³²Te ($T_{1/2} = 3.26$ d),

¹³⁷Cs ($T_{1/2} = 30.17 \text{ y}$), ^{137m}Ba ($T_{1/2} = 2.55 \text{ min}$), ¹⁴⁰Ba ($T_{1/2} = 12.75 \text{ d}$), ¹⁴⁰La ($T_{1/2} = 1.68 \text{ d}$), ¹⁴¹Ce ($T_{1/2} = 32.5 \text{ d}$), ²³⁸U ($T_{1/2} = 4.47 \times 10^9 \text{ y}$), ²³⁵U ($T_{1/2} = 7.04 \times 10^9 \text{ y}$), and ²³⁹Np ($T_{1/2} = 2.36 \text{ d}$). Many other radionuclides did not appear in the gamma spectrum of the irradiated uranium target because of one or more of the following reasons: (i) low fission-yield, (ii) low-energy or low-abundance gamma rays, (iii) interferences between γ-photopeaks, and (iv) absence of gamma-ray emission. Some of these radionuclides were successfully appeared in gamma spectra with the successive separation processes.

The irradiated targets were digested in 10 ml of 2 M NaOH solution for ~12 h. At end of the digestion process, the radionuclides of $^{137}\text{Cs/}$ $^{137\text{m}}\text{Ba}$ and $^{99}\text{Mo/}$ $^{99\text{m}}\text{Tc}$ were completely included in the supernatant. The uranium bulk (^{238}U and ^{235}U) was included in the undissolved residue. The other radionuclides distributed themselves between the supernatant and the residue with different ratios.

To separate and recover ¹³¹I, the supernatant obtained from the digestion process was acidified by addition of H₂SO₄, along with H₂O₂. The acidified fission-products solution (15 ml containing 20 % H₂SO₄ and 0.5 ml of 30 % H₂O₂) was boiled for 3.5 h. The volatilized iodine was recovered in two alkali receivers (each containing 0.1 M NaOH-0.01 % Na₂S₂O₃ solution), after passage by two successive acid filters (each containing 3 M H₂SO₄). Separation and recovery yields of ¹³¹I received in the alkali solution were found to be > 99.99 % and 73.6 %, respectively, with radionuclidic purity of 98.28 % (1.72 % of the total γ-radioactivity of the radioiodine product was due to ¹³²I). Radiochemical purity of the radioiodine product (as iodide) was determined by the ascending method of paper chromatography (using Whatman No. 1 paper) and TLC (with silica gel) chromatography. Radiochemical purity was found to be 99.81 % with Whatman No. 1 paper and 99.76 % with TLC. pH-value of the radioiodine

product solution was found to be 12.8. Calculated radioactivities of the recovered ^{131}I were found to be < 898, < 2694, and < 4490 μCi , while the calculated specific radioactivities were found to be < 45, < 135, and < 225 $\mu Ci/ml$ with weights of 0.02, 0.06, and 0.1 g of the irradiated UO₃ targets, respectively.

To separate and recover 103 Ru, the fission-products solution obtained after separation of 131 I was treated with excess of H_2SO_4 , along with KMnO₄. The fission-products solution (15 ml containing 40 % H_2SO_4 and 0.01g KMnO₄) was then boiled for 40 min. The volatilized ruthenium was recovered in an alkali receiver (containing 0.1 M NaOH). Separation and recovery yields of 103 Ru was found to be > 99.99 % and 65.03 %, respectively. Radionuclidic purity of the recovered 103 Ru was found to be 91.78 % (4.81 % and 3.41 % of γ -radioactivity of the recovered radioruthenium were due to 106 Rh and 132 I, respectively). pH-value of the recovered radioactivities of the recovered 103 Ru were found to be 12. Calculated radioactivities of the recovered 103 Ru were found to be 293, 880, and 1466 μ Ci, while the calculated specific radioactivities were found to be 16, 49, and 81 μ Ci/ml with weights of 0.02, 0.06, and 0.1 g of the irradiated UO₃ targets, respectively.

After separation of ¹⁰³Ru, two successive batch separation processes were carried out to discard two groups of elements. In the first process, a solution containing 20 mg of BaCl₂ was added to the fission-products solution and, then, the formed precipitate was separated after ~ 18 h. The isotopes of ¹⁴⁰Ba and ¹⁴⁰La disappeared completely from the filtrate and detected in the formed precipitate. The precipitate also contained ^{90m}Y, ¹⁴¹Ce, ¹⁴³Ce, ¹⁴⁴Ce, and traces of ¹³²I and ^{137m}Ba. In the second batch separation process, a solution containing 20 mg of FeCl₃ was added to the fission-products solution. Then, pH-value of the solution was risen to ~ 7. The formed precipitate was separated after about one hour. The isotopes of

⁹⁵Zr, ⁹⁷Zr, ⁹⁵Nb, ^{97m}Nb, ⁹⁷Nb, ¹⁰⁵Rh, ¹³²Te, ¹³²I, and ²³⁹Np disappeared completely from the fission-products solution and detected in the formed precipitate.

To separate and recover ¹³⁷Cs, the fission-products solution obtained from the second batch separation process was treated with a solution of $0.01\,$ M (30 mg) sodium ferrocyanide. After ~ 15 min, a solution of $0.02\,$ M (26 mg) nickel chloride was added. The solution was left again for ~15 min before raising its pH-value to 10. After about one hour the formed precipitate was separated and dissolved in dilute H₂SO₄. ¹³⁴Cs and ¹³⁷Cs disappeared completely from the filtrate and detected in the formed precipitate. The precipitate also contained 136Cs. Separation and recovery yields of ¹³⁷Cs were found to be > 99.99 % and 98.3 %, respectively. Radionuclidic purity of the recovered 137Cs was found to be 84.5 % (15.46 % and 0.04 % of the total γ-radioactivity of the recovered radiocesium were due to 134Cs and 136Cs, respectively). Calculated radioactivities of the recovered 137 Cs were found to be 4, 11, and 19 μ Ci, while the calculated specific radioactivities were found to be 1, 2, and 4 μCi/ml with weights of 0.02, 0.06, and 0.1 g of the irradiated UO₃ targets, respectively.

After separation of radiocesium, only 99 Mo radioactivity was remained in the fission-products solution in equilibrium with its $^{99\text{in}}$ Tc daughter. Finally and after carrying out all of the aforementioned separation processes, recovery yield of 99 Mo was found to be ~ 70 %. Radionuclidic purity of the recovered 99 Mo was found to be > 99.9 %, while pH-value of its solution was found to be 10. Calculated radioactivities of the recovered 99 Mo were found to be 1368, 4104, and 6841 μ Ci, while the calculated specific radioactivities were found to be 137, 410, and 684 μ Ci/ml with weights of 0.02, 0.06, and 0.1 g of the irradiated UO₃ targets, respectively.