CHAPTER 3 RESULTS AND DISCUSSION

CHAPTER 3

RESULTS AND DISCUSSION

3.1. Preparation and choice of the uranium target:

3.1.1. Target wrapper and irradiation can:

The target wrappers and the irradiation cans were made of the highest-purity aluminum products because of the following reasons:

- 1. Amount of energy released from the fission process is ~200 MeV for each fission event. The high thermal conductivity of aluminum (2.37 W/cmK) enhances the dissipation of heat accompanying the fission process during irradiation.
- 2. ²⁸Al isotope, which was produced during target irradiation via the nuclear reaction ²⁷Al(n, γ)²⁸Al, is a short-lived isotope ($T_{1/2}$ = 2.25 min) so that no radioactivity due to ²⁸Al (E_{γ} = 1779 keV) was detected in the irradiated targets and their solutes after the cooling period.
- 3. The aluminum wrappers were suitable for direct introduction of the irradiated uranium target to chemical processing. The aluminum wrapper, containing the irradiated uranium target, was dissolved in the digesting agent, NaOH solution, to avoid any loss of the irradiated target, contaminating the surrounding atmosphere, disbatch operations, and radiation hazards.
- 4. Aluminum is available in high-purity with reasonable prices.

In case of weights higher than 0.02 g of the target (i.e., 0.06 and 0.1 g), it was recommended to fill the inner space of the irradiation can with thin aluminum foils for further enhancement of heat dissipation avoiding any problems of heat accumulation in the can during irradiation.

3.1.2. Uranium targets:

The uranium targets were irradiated at a thermal neutron flux of 1×10¹⁴ n/cm²s in the ETRR-2 Egypt Research Reactor. The average ratio of fast neutrons to thermal neutrons, n_f / n_{th} , in the irradiation positions is ~0.55 at beginning of the fuel cycle and ~0.52 at end of it. Figure 3.1 (a and b) shows the gamma spectra of the UO3 target before and after irradiation for 4 h and cooling for one week. Figure 3.1(a) shows the γ-photopeaks of and ^{234m}Pa appeared in the gamma spectrum of the UO₃ ²³⁵U, ²³⁸U, target before irradiation. Figure 3.1 (b) shows the γ-photopeaks of ⁹⁵Zr, ⁹⁷Zr, ⁹⁵Nb, ^{97m}Nb, ⁹⁹Mo/^{99m}Tc, ¹⁰³Ru, ¹³²Te, ¹³¹I, ¹³²I, ¹³⁷Cs/ ^{137m}Ba, ¹⁴⁰Ba, ¹⁴⁰La, ¹⁴¹Ce, ²³⁸U, ²³⁵U, and ²³⁹Np appeared in the gamma spectrum of the UO₃ after irradiation. Many other radioisotopes (such as ^{125m}Te, ¹²⁹I, ⁸⁹Sr, ¹³⁶Cs, ¹⁴¹Cs, ¹⁴²Cs, ¹⁰¹Mo, and ¹⁰²Mo) did not appear in the gamma spectrum of the irradiated target because of one or more of the following reasons: (i) low fission yield, (ii) low-energy or low-abundance gamma rays, (iii) interferences between γ-photopeaks due to presence of many isotopes with converging characteristic values of decay-gamma ray energies, and (iv) absence of gamma-ray emission. Generally, some of these radioisotopes were successfully appeared, where the interference and overlap of the different \u03c4-photopeaks would decrease with the successive separation processes. Fission yields of the isotopes mentioned in this work were cited from Etherington (1958) and England and Rider (1993), whereas the half-lives and decay data of the radioactive isotopes were cited from Burrows (1988) and Chu et al. (1999).

Preliminary irradiation processes were conducted using uranyl nitrate hexahydrate targets. During irradiation of the uranyl nitrate targets, tritium (3H) may be produced as a result of bombarding nitrogen atoms of the

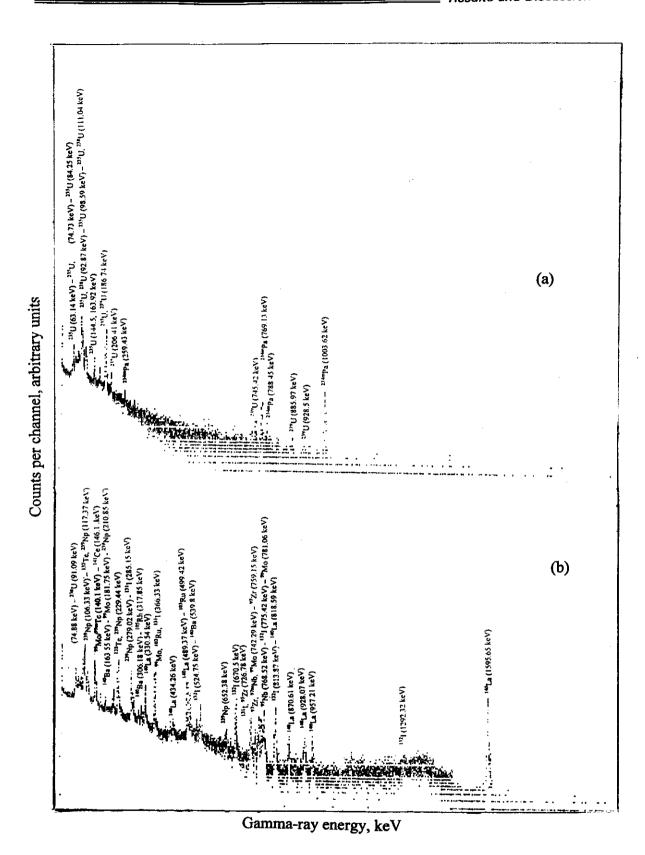


Figure 3.1. Gamma spectra of the UO_3 target (a) before irradiation and (b) after irradiation for 4 h at a thermal neutron flux of 1×10^{14} n/cm²s and cooling for one week.

nitrate group by fast neutrons according to the following reaction (Choppin and Rydberg, 1980):

$$_{0}^{1}$$
n(fast) + 14 N \longrightarrow 12 C + 3 H

According to the previous equation, fast neutron irradiation of uranyl nitrate would increase the tritium content (where tritium is also produced as a fission product, independent of chemical structure of the uranium target, in small mass quantities of $\sim 2.8 \times 10^{-5}$ g tritium/kg nuclear fuel) (Bray et al., 1981). Although tritium ($T_{1/2} = 12.32$ y) emits relatively low-energy beta particles (5.69 keV), it has many hazardous effects on health and environment (Straume, 1991; DOE, 1995). On the other hand, protium (1 H) was produced during irradiation of the uranyl nitrate by bombarding nitrogen atoms of the nitrate group with slow neutrons according to (Choppin and Rydberg, 1980):

$$^{1}_{0}$$
n(slow) + 14 N \longrightarrow 14 C + 1 H

Between 200 and 350°C, uranyl nitrate hexahydrate undergoes thermal decomposition resulting in formation of NO₂ and O₂ gases, and water vapor according to the following equation (Cordfunke, 1969):

$$UO_2(NO_3)_2.6H_2O$$
 $\xrightarrow{200-350^{\circ}C}$ $UO_3 + 2NO_2 + 1/2O_2 + 6H_2O_{(g)}$

All these gases (³H, ¹H, NO₂, O₂) and water vapor, produced during irradiation of the uranyl nitrate hexahydrate target, would increase the pressure inside the aluminum wrapper and, consequently, inside the irradiation can which may cause adverse effects during the irradiation,

cooling, and decanning processes. On the other hand, in case of uranium trioxide, the following thermal decomposition reaction may occur during its irradiation (Cotton and Wilkinson, 1979):

$$3UO_3 \xrightarrow{700^{\circ}C} U_3O_8 + \frac{1}{2}O_2$$

However, uranyl nitrate targets have a high solubility in organic liquids which found practical importance in solvent extraction applications (Cordfunke, 1969). UO₃ was preferred as a target material, where lower amounts of gases are produced during irradiation than in case of UO₃(NO₃)₂.6H₂O. The uranyl nitrate hexahydrate target was used in the preliminary experiments of this work to establish a standard processing procedure. Thereafter, UO₃ targets were used in different weights (0.02, 0.06, and 0.1 g).

3.2. Digestion of the irradiated uranium targets:

At end of the seven-days cooling period, the irradiated uranium target was digested in a sodium hydroxide solution.

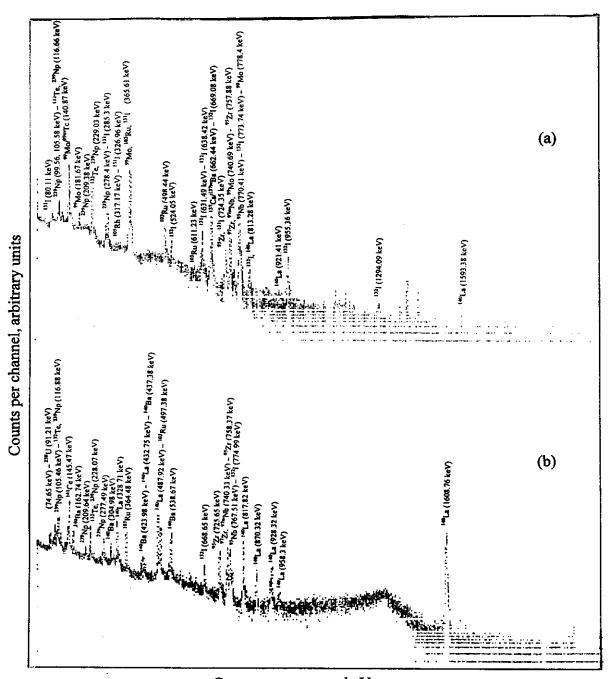
3.2.1. Advantages of alkali digestion over acid dissolution:

There are three main advantages for alkali digestion of the irradiated uranium targets which are not present in case of acid dissolution; these are (Vandegrift et al., 1997):

- 1. Digestion in the alkali solution releases the noble fission gases (krypton and xenon), while radioiodine remains in the fission-products solution, i.e., noble fission gases can be recovered separately from radioiodine.
- 2. On lowering pH-value of the fission-products solution, radioiodine releases in the gas phase allowing its separate recovery.

3. The digestion in the alkali solution causes the precipitation of the uranium bulk as uranate (or diuranate), and many other fission products as insoluble hydroxides. This is considered as a decontamination step in the chemical processing to recover one or more desired fission isotope.

3.2.2. The digestion technique:


Figure 3.2 (a and b) shows the gamma spectra of the supernatant and the residue obtained from digestion of the irradiated UO₃ target in 10 ml of 2 M NaOH solution for ~12 h. Figure 3.2 indicates that the radioisotopes distributed themselves between the supernatant and the residue as follows:

- 1. ¹³⁷Cs/^{137m}Ba and ⁹⁹Mo/^{99m}Tc were completely included in the supernatant.
- 2. Bulk of the uranium target, ²³⁸U and ²³⁵U, was included in the residue.
- 3. The other radioisotopes distributed themselves between the supernatant and the residue with different ratios.

The aluminum wrapper dissolves in the sodium hydroxide solution forming sodium aluminate according to the following equation (Foster et al., 1955):

$$Al + NaOH + H_2O \longrightarrow NaAlO_2 + 3/2H_2$$

Though it is likely that the species in the solution is the hydrated tetrahydroxoaluminate anion [Al(OH)₄] or [Al(H₂O)₂(OH)₄] (aq) (Greenwood and Earnshaw, 1984). Both of the uranyl nitrate and the uranium trioxide targets react with NaOH solution producing sodium uranate precipitate, Na₂UO₄, (which commonly encountered as sodium diuranate, Na₂U₂O₇) according to the following equations:

Gamma-ray energy, keV

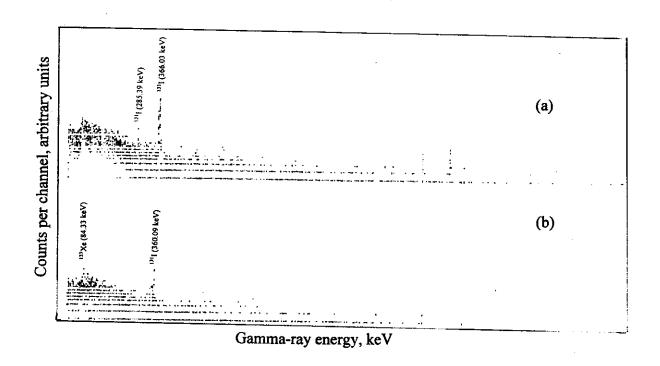
Figure 3.2. Gamma spectra of (a) the supernatant and (b) the residue obtained from the digestion process of the thermal neutron irradiated UO₃ target in NaOH solution.

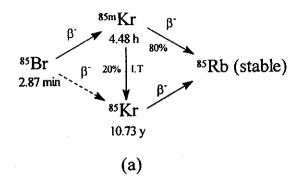
At beginning of the digestion process, the aluminum wrapper containing the irradiated uranium target was introduced to the three-nick bottle of the digestion system (Figure 2.1) together with the digesting agent (10 ml of 2 M NaOH). Thereafter, a current of air was introduced to the three-nick bottle and withdrawn by a pump to carry the fission gases (tritium, krypton, xenon, and a fraction of iodine) which were expected to escape during digestion and the gases produced as a result of the digestion reactions, such as hydrogen obtained from reaction of aluminum wrapper with NaOH solution, or during the irradiation, such as O₂ in case of UO₃ or NO₂, protium, and tritium in case of the uranyl nitrate. The stream of gases passed through an alkali trap (15 ml of 3 M NaOH) to retain NO₂ and I₂, and then passed through a nitrogen-cooled filter containing activated charcoal impregnated with silver nitrate solution to absorb krypton and xenon gases, and also any traces of iodine escaping from the alkali trap. Finally, the gaseous stream passed through the pump to ventilation. After ~12 h, the supernatant was withdrawn and centrifuged to ensure that it became free from any traces of the uranate (or diuranate) residue.

Figure 3.3 (a and b) shows the gamma spectra of the alkali trap (in which ¹³¹I appeared) and of the charcoal filter (in which traces of ¹³¹I and ¹³³Xe appeared) of the digestion system. Fission reactions of ²³⁵U produce

21 xenon isotopes; ¹²⁹Xe, ^{131m}Xe, ¹³¹Xe, ¹³²Xe, ^{133m}Xe, ¹³³Xe, ^{134m}Xe, ¹³⁴Xe, ^{135m}Xe, ¹³⁵Xe, ¹³⁶Xe, ¹³⁷Xe, ¹³⁸Xe, ¹³⁹Xe, ¹⁴⁰Xe, ¹⁴¹Xe, ¹⁴²Xe, ¹⁴³Xe, ¹⁴⁴Xe, ¹⁴⁵Xe, and ¹⁴⁶Xe. Five of these isotopes are stable nuclides while the other are radioactive ones. The five stable ones are ¹²⁹Xe, ¹³¹Xe, ¹³²Xe, ¹³⁴Xe, and ¹³⁶Xe. There are 13 short-lived fission-xenon isotopes with half-lives ranging from a fraction of second to few hours; 134m Xe $(T_{1/2} = 0.29 \text{ s})$, ^{135m}Xe ($T_{1/2} = 15.36 \text{ min}$), ¹³⁵Xe ($T_{1/2} = 9.1 \text{ h}$), ¹³⁷Xe ($T_{1/2} = 3.82 \text{ min}$), ¹³⁸Xe $(T_{1/2} = 14.13 \text{ min})$, ¹³⁹Xe $(T_{1/2} = 39.68 \text{ s})$, ¹⁴⁰Xe $(T_{1/2} = 13.6 \text{ s})$, ¹⁴¹Xe $(T_{1/2} = 13.6 \text{ s})$ 1.73 s), ¹⁴²Xe ($T_{1/2} = 1.22$ s), ¹⁴³Xe ($T_{1/2} = 0.3$ s), ¹⁴⁴Xe ($T_{1/2} = 1.15$ s), 145 Xe ($T_{1/2} = 0.9$ s), and 146 Xe ($T_{1/2} = 0.56$ s). These short-lived xenon isotopes decayed practically, completely during the seven-days cooling There are three fission-xenon isotopes with half-lives in the order of few days; $^{131\text{m}}$ Xe $(T_{1/2} = 11.9 \text{ d})$, $^{133\text{m}}$ Xe $(T_{1/2} = 2.19 \text{ d})$, 133 Xe $(T_{1/2} =$ 5.24 d). ^{131m}Xe and ^{133m}Xe have (i) low fission yields (0.034 and 0.192 %, respectively), and (ii) low-abundance gamma rays (1.7 % of 163.97 keV and 9.9 % of 233.5 keV, respectively). Among the fission-xenon isotopes, only 133Xe was detected in the gamma spectrum of the charcoal filter of the digestion system, as shown in Figure 3.3 (b). This is because of its (i) suitable half-life, (ii) high fission yield ($Y_f = 6.7 \%$), and (iii) measurable energy of gamma rays of decay (36.6 % of 80.99 keV).

²³⁵U-fission reactions produce 18 krypton isotopes; ⁸²Kr, ^{83m}Kr, ⁸³Kr, ⁸⁴Kr, ^{85m}Kr, ⁸⁵Kr, ⁸⁶Kr, ⁸⁷Kr, ⁸⁸Kr, ⁸⁹Kr, ⁹⁰Kr, ⁹¹Kr, ⁹²Kr, ⁹³Kr, and ⁹⁴Kr. Of these isotopes, there are four stable ones; ⁸²Kr, ⁸³Kr, ⁸⁴Kr, and ⁸⁶Kr. There are 13 short-lived fission-krypton isotopes with half-lives ranging from a fraction of second to few hours; ^{83m}Kr ($T_{1/2} = 1.86$ h), ^{85m}Kr ($T_{1/2} = 4.48$ h) ⁸⁷Kr ($T_{1/2} = 1.27$ h), ⁸⁸Kr ($T_{1/2} = 2.84$ h), ⁸⁹Kr ($T_{1/2} = 3.15$ min), ⁹⁰Kr ($T_{1/2} = 3.2.3$ s), ⁹¹Kr ($T_{1/2} = 8.57$ s), ⁹²Kr ($T_{1/2} = 1.84$ s), ⁹³Kr ($T_{1/2} = 1.29$ s), ⁹⁴Kr ($T_{1/2} = 0.2$ s), ⁹⁵Kr ($T_{1/2} = 0.78$ s), ⁹⁶Kr ($T_{1/2} = 0.29$ s), and ⁹⁷Kr ($T_{1/2} = 0.1$ s). All of these short-lived krypton isotopes decayed practically,




Figure 3.3. Gamma spectra of the (a) alkali trap and (b) charcoal filter of the digestion system.

completely during the cooling time of seven days. The only long-lived fission-krypton isotope is 85 Kr ($T_{1/2} = 10.73$ y). Krypton-85 is of low importance because: (i) it has a low fission yield ($Y_f = 0.283$ %), and (ii) it has low-abundance gamma rays of decay (0.4 % of 513.97 keV). Thus, none of krypton radioisotopes appeared in the gamma spectrum of the charcoal filter (Figure 3.3, b) because of their short half-lives, low fission yields, and/or low-abundance gamma rays of decay. Figure 3.4 (a and b) shows the decay chains of 85 Kr and 133 Xe as 235 U-fission products, while Table 3.1 compiles the nuclear characteristics and fission yields of the krypton and xenon isotopes produced from fission reactions of 235 U.

The iodine isotopes that are produced from the fission of ²³⁵U will be mentioned latter in details (Section 3.2).

3.2. Production of radioiodine:

Figure 3.1 (b) indicates presence of the γ -photopeaks of ¹³¹I (366.33, 285.15, and 726.78 keV), ¹³²I (670.5, 524.75, 775.42, 813.87, and 1292.32 keV), and ¹³²Te (229.44 and 117.37 keV). Fission reactions of ²³⁵U give rise to 11 iodine isotopes; ¹²⁷I, ¹²⁹I, ¹³¹I, ¹³²I, ¹³³I, ¹³⁴I, ¹³⁵I, ¹³⁶I, ¹³⁷I, ¹³⁸I, and ¹³⁹I. Iodine-127 is stable, whereas ¹³⁴I, ¹³⁵I, ¹³⁶I, ¹³⁷I, ¹³⁸I, and ¹³⁹I are short-lived radioisotopes with half-life periods of 52.6 min, 6.57 h, 1.39 min, 24.5 s, 6.49 s, and 2.28 s, respectively, so that they decayed completely during the seven-days cooling period. Iodine-133 ($T_{I/2} = 20.8$ h) did not appear in any of the gamma spectra of this work as a result of its relatively-short half-life and, generally, the sweep of its decay products ^{133m}Xe and ¹³³Xe during irradiation and cooling of the uranium targets. Iodine-129 ($T_{I/2} = 1.57 \times 10^7$ y), which decays to stable ¹²⁹Xe, did not appear in the gamma spectra because of its low-energy gamma rays (29.78 keV). The most important ²³⁵U fission-iodine isotopes are ¹³¹I ($T_{I/2} = 8.04$ d) and

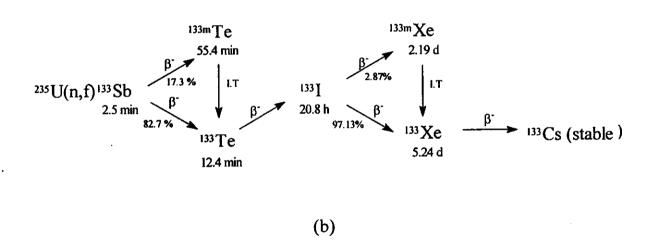


Figure 3.4. Decay chains of (a) ⁸⁵Kr and (b) ¹³³Xe as ²³⁵U-fission products.

Table 3.1. Nuclear characteristics and fission yields of the ²³⁵U-fission krypton and xenon isotopes.

Isotope		Half-life, $T_{1/2}$ Fission yield, Y_f		Decay	Main γ-energy (abundance), and
				mode	other γ-energies in keV
	⁸² Kr	Stable	3.5×10^{-5} %	-	-
S	^{83m} Kr	1.86 h	0.536 %	l.T	9.4 (5.4 %), 32.15
	⁸³ Kr	Stable	0.536 %	-	-
	84Kr	Stable	1.1%	-	-
	85mKr	4.48 h	1.29 %	β ⁻ , I.T	151.8 (75.3 %), 129.85, 304.87,
	85Kr	10.73 y	0.283 %	β	513.97 (0.4 %), 151.16, 362.81,
	86Kr	Stable	2.1 %	-	-
pe	⁸⁷ Kr	1.27 h	2.56 %	β-	402.58 (49.5 %), 2554.8, 845.43,
Krypton isotopes	ag Kr	2.84 h	3.55 %	β	2392.11 (34.6 %), 196.32, 2195.84,
ַ בַּ	89Kr	3.15 min	4.51 %	β-	220.9 (20 %), 585.5, 904.27,
ξ	90Kr	32.3 s	4.86 %	β	1118.7 (38 %), 121.82, 539.49,
조	91Kr	8.57 s	3.35 %	β	108.79 (43.5 %), 412.04, 630.14,
:	⁹² Kr	1.84 s	1.67 %	β	142.31 (64 %), 316.8, 1218.6,
	93Kr	1.29 s	0.489 %	β', β'n	253.42 (41.2 %), 182.02, 323.89,
	94Kr	0.2 s	0.087 %	β', β'n	219.47 (67.4 %), 186.32, 288.18,
	95Kr	0.78 s	0.0072 %	β	-
	%Kr	0.29 s	0.038 %	β-	-
	97Kr	0.1 s	$2.97 \times 10^{-5} \%$	β', β'n	-
	¹²⁹ Xe	Stable		-	-
	^{131m} Xe	11.9 d	0.034 %	I.T	163.97 (1.7 %)
	131 Xe	Stable	2.89 %	-	-
	132Xe	Stable	4.31 %	-	
	^{133m} Xe	2.19 d	0.192 %	l.T	233.5 (9.9 %)
	¹³³ Xe	5.24 d	6.7 %	β	80.99 (36.6 %), 160.61, 302.85,
	^{134m} Xe	0.29 s	0.032 %	I.T	847.025 (100 %), 234.3, 884.09
	¹³⁴ Xe	Stable	7.6 %	-	-
မွာ	135mXe	15.36 min	1.1 %	β, Ι.Τ	526.8 (81 %), 786.84, 1133,
ě	¹³³ Xe	9.1 h	6.54 %	β	249.65 (89.8 %), 408, 608.6,
g	136Xe	Stable	0.4 %		-
.ii	¹³⁷ Xe	3.82 min	6.13 %	β	455.51 (31 %), 849, 1784,
Xenon isotopes	¹³⁸ Xe	14.13 min	6.3 %	β-	258.41 (31.5 %), 434.56, 1768.26
×	¹³⁹ Xe	39.68 s	5.04 %	β.	218.75 (56 %), 296.7, 174.9,
	¹⁴⁰ Xe	13.6 s	3.65 %	β	805.52 (20.5 %), 1413.66, 1315.05,
	141 Xe	1.73 s	1.25 %	β', β'n	118.71 (16.1 %), 105.94, 540.12,
	142Xe	1.22 s	0.439 %	β', β'n	571.83 (1000 %), 618.31, 657.05,
	¹⁴³ Xe	0.3 s	0.053 %	β.	90 (0 %)
1	144 Xe	1.15 s	0.006 %	β	•
	145Xe	0.9 s	7.16 × 10 ⁻⁵ %	β', β'n	•
	¹⁴⁶ Xe	0.56 s	1.06 × 10 ⁻⁵ %	β	. •

 132 I ($T_{1/2} = 2.28$ h). Iodine-132 remains among the other fission products for longer time than the other short-lived iodine isotopes mentioned above, since it is continuously regenerated from its parent 132 Te ($T_{1/2} = 3.26$ d). Iodine-131 decays to 131 mXe ($T_{1/2} = 11.9$ d) which in turn decays to stable 131 Xe, whereas 132 I decays to stable 132 Xe. As mentioned above in Section 3.2.2, 131 mXe did not appear in the gamma spectra of this work because of its low fission yield and low-abundance gamma rays. Figure 3.5 (a and b) shows the decay chains of 131 I, and 132 I as 235 U-fission products, whereas Table 3.2 compiles the nuclear characteristics and fission yields of 235 U-fission iodine isotopes.

The radioisotope ¹³¹I is produced on a large scale in a special remotely-controlled apparatus either from fission of ²³⁵U or from tellurium or tellurium oxide targets according to the nuclear reaction:

$$^{130}\text{Te}(n,\gamma)^{131}\text{Te} \xrightarrow{\beta^{\circ}} ^{131}\text{I}$$

Quantity of ¹³¹I produced by the latter reaction is limited by the thermal neutron cross-section ($\sigma = 0.22$ b) (Sandru and Topa, 1968) and abundance of ¹³⁰Te in the target as well as by neutron flux distribution in the irradiation facility (Soenarjo et al., 1999). Whereas, an extremely high specific activity quantity of ¹³¹I can be provided via ²³⁵U(n,f) reaction with a fission yield of 2.89 %. Iodine-131 emits high-energy gamma rays (82.4 % of 364.49 keV) and particulate emissions. Beta particles with average energy = 192 keV, max energy = 607 keV are emitted and deposit the majority of their energy within 2.2 mm of their site of origin. ¹³¹I has important applications in nuclear medicine in both diagnostic and therapeutic fields (Maxon and Smith, 1990; Nordyke and Gilbert, 1991).

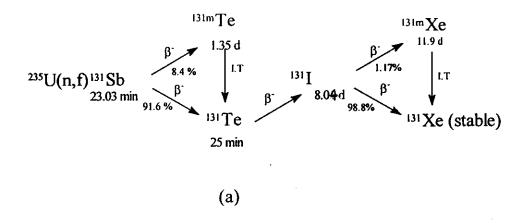


Figure 3.5. Decay chains of (a) ¹³¹I and (b) ¹³²I as ²³⁵U-fission products.

Table 3.2. Nuclear characteristics and fission yields of the ²³⁵U-fission iodine isotopes.

Isotope	Half-life, T _{1/2}	Fission yield, Y_f	Decay mode	Main γ-energy (abundance), and other γ-energies in keV
¹²⁷ I	Stable	0.156 %	· · · · · · · · · · · · · · · · · · ·	-
¹²⁹ [$1.57\times10^7\mathrm{y}$	0.511%	β	29.78 (37 %), 29.46, 33.57,
131[8.04 d	2.89 %	β	364.49 (82.4%), 80.16, 284.31, 325.8, 636.9, 722.91,
132	2.28 h	4.31 %	β	667.68 (98.7%), 522.94, 630.21, 772.6, 812.2, 954.55, 1298,
133	20.8 h	6.7 %	β.	529.5 (87.3 %), 875.3, 1298.9,
134[52.6 min	7.83 %	β	847.03 (95.4 %), 172.55, 884.09,
135	6.57 h	6.28 %	β-	1260.41 (29 %), 1131.51, 1457.56,
!36]	1.39 min	2.64 %	β-	1313.2 (67 %), 1321.2, 2289.6,
¹³⁷ l	24.5 s	3.07 %	β-	1218 (12.8 %), 600.5, 773.2,
138[6.49 s	1.49 %	β-, β-n	588.8 (56 %), 431, 483.7,
139	2.28 s	0.778 %	ββп	527.7 (100 %), 571.2, 536.6

iodine scans for following a patient with thyroid carcinoma, (iii) localization of tumors for removal, (iv) localization of the osteomyelitis infections, and (v) single-photon emission computed tomography (SPECT) imaging. ¹³¹I therapy is used in treatment of (i) carcinoma of the thyroid (ii) the lymphoid tissue tumor/hyperthyroidism, (iii) the graves disease, (iv) the goiters, (v) the prostate cancer, (vi) the hepatocellular carcinoma, (vii) the melanoma, and (viii) treatment of spinal tumor.

3.3.1. Separation technique:

The alkali supernatant solution of fission products, containing iodine in the NaI form was transferred to the still (round-bottom flask) of the radioiodine-recovery system (Figure 2.2). Upon acidifying the solution by adding H₂SO₄, along with H₂O₂, iodide ion liberates as molecular I₂ according to:

$$H_2O_2 + 2NaI + H_2SO_4 \longrightarrow I_2 + Na_2SO_4 + 2H_2O$$

On adding H_2SO_4 acid to $pH \le 10$, aluminum content precipitates as $Al(OH)_3$ according to the following equation:

$$4NaAlO_2 + 2H_2SO_4 + 4H_2O \longrightarrow 4Al(OH)_3 + 2Na_2SO_4$$

With further addition of sulfuric acid to pH \leq 5, aluminum hydroxide precipitate dissolves as follows:

$$4Al(OH)_3 + 6H_2SO_4 \longrightarrow 2Al_2(SO_4)_3 + 12H_2O$$

Adding up these two equations gives the net equation showing the conversion of the AlO₂ to the Al³⁺ cation ((Agasyan, 1980), which is:

$$4NaAlO_2 + 8H_2SO_4 \longrightarrow 2Na_2SO_4 + 2Al_2(SO_4)_3 + 8H_2O$$

is known that molecular iodine sublimes at room temperature. The acidified fission-products solution had to be boiled to increase the rate of iodine volatilization. Figure 3.6 (a, b, c, and d) shows the gamma spectra of the fission-products solution before and after acidification and boiling for different time periods. A current of air was introduced to the still of the radioiodine-recovery system and withdrawn by a pump, carrying the volatilized iodine. The air current passed through a water-cooled condenser to condense vapors of the sulfuric acid and collect them in a separate conical flask. Then, the air current passed through two successive acid traps (containing 15 and 5 ml of 3 M H₂SO₄, respectively) to retain any acidsoluble impurities might be distilled off along with molecular iodine and, also, to trap any species of iodine with oxidation numbers rather than zero, e.g., $1O_3^-$ and/or I_2O_5 . To recover the maximum possible amount of the radioiodine, the air current (after emerging from the second acid trap) passed through two successive alkali receivers (containing 15 and 5 ml of 0.1 M NaOH-0.01% Na₂S₂O₃ solution, respectively). The second alkali was introduced to recover any amount of molecular iodine which might escape from the first one. For safety reasons, after its emergence from the second alkali receiver, the air current passed through a nitrogen-cooled filter containing charcoal impregnated with silver nitrate solution to retain any traces of the iodine that might escape from the second alkali receiver. Finally, the air current passed through the pump to ventilation.

Iodine was recovered in the alkali solution containing Na₂S₂O₃ in the NaI form as indicated by the following equation (Agasyan, 1980):

$$I_2 + 2Na_2S_2O_3 \longrightarrow Na_2S_4O_6 + 2NaI$$

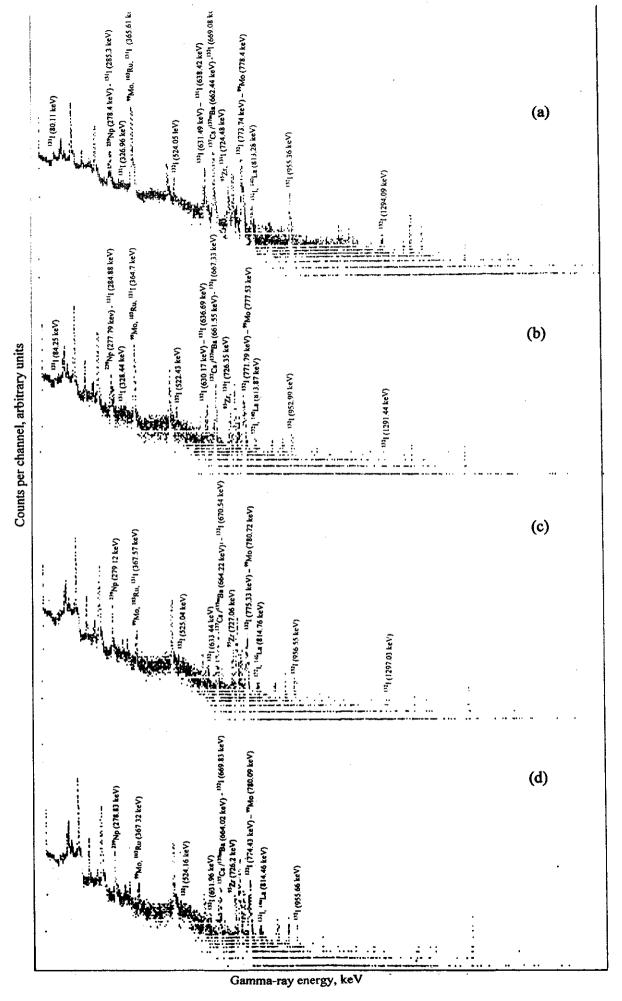


Figure 3.6. Gamma spectra of the fission-products solution (a) before acidification, and after acidification and boiling for (b) 2 h, (c) 3h, and (d) 3.5 h for separation of ¹³¹ I.

3.3.2. Quality control of the ¹³¹I product:

3.3.2.1. Separation and recovery yields:

Figure 3.7 (a, b, c, and d) shows gamma spectra of the acid traps and the alkali receivers of the radioiodine-recovery system after boiling the acidified fission-products solution for 3.5 h. The only radioisotope detected in the acid traps and in the alkali receivers with ¹³¹I was ¹³²I.

Table 3.3 compiles the radiometric analysis data of the isotopes 131 I and 132 I in: (i) the fission-products solution before acidification and after different times of boiling, and (ii) the acid traps and alkali receivers of the radioiodine-recovery system after boiling for 3.5 h. It should be mentioned that, there was an interference between the main γ-photopeak of 131 I (364.49 keV) and the two γ-photopeaks of 99 Mo and 103 Ru; 366.42 and 363.5 keV, respectively. As a result of this interference, these three peaks were appeared as one peak in the spectrum of the fission-products solution. Thus during boiling, the area under this peak decreased continuously as more 131 I was distilled off. After volatilization of all 131 I, the area under this peak became constant with further boiling. Boiling of the acidified fission-products solution (15 ml containing 20 % H₂SO₄ and 0.5 ml of 30 % H₂O₂) for 3.5 h was sufficient to remove more than 99.99 % of 131 I, i.e., the separation yield of 131 I ($S_{(l-131)}$) was > 99.99 %, where the area under the interference photopeak became constant with further boiling after 3.5 h.

According to data given in Table 3.3, total yield of recovered ¹³¹I $(R_{(l-13l)tol})$, defined by Equation 2.2, was found to be 97.31 %. Yield of ¹³¹I recovered in the two acid traps $(R_{(l-13l)acid})$, defined by Equation 2.3, was 23.71 % (22.16 % in the first one and 1.55 % in the second one), whereas that of ¹³¹I recovered in the two alkali receivers, i.e., production yield of ¹³¹I $(R_{(l-13l)alk})$, defined by Equation 2.4, was 73.6 % (67.98 % in the first one and 5.62 % in the second one). Concerning ¹³²I, it was renewally generated in the fission-products solution from the decay of its parent ¹³²Te.

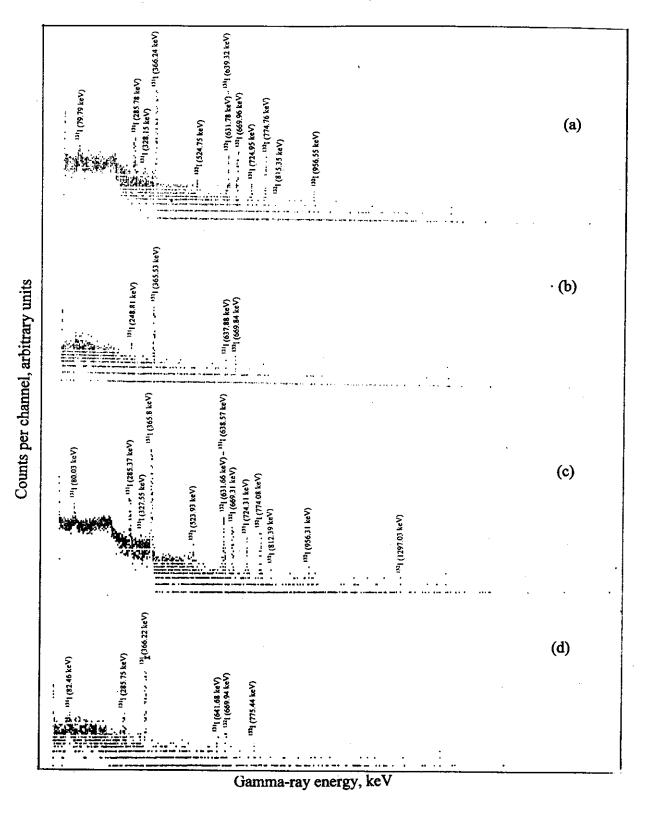


Figure 3.7. Gamma spectra of (a) the first acid trap (b) the second acid trap, (c) the first alkali receiver, and (d) the second alkali receiver of the radioiodine-recovery system.

Table 3.3. Radiometric analysis data for separation and recovery of ¹³¹I.

	lsotope	;	131	¹³² [
	Fission-products (F.P) solution	Before boiling After boiling for 2 h	365.61, 80.11, 285.3, 326.96,638.42, 724.48 364.7, 84.25, 284.88,	669.08, 524.05,631.49, 773.74, 813.28, 955.36, 1294.09 667.33, 522.43, 630.17,
Centroids (CTRDs) of the obtained y-photopeaks in keV		After boiling for 3 h	328.44, 636.69, 726.35 367.57	771.79,813.87,952.99, 1291.44 670.54, 525.04, 633.44, 775.33, 814.76, 956.55, 1297.03
ids (CTRDs) of the ol y-photopeaks in keV		After boiling for 3.5 h	Not detected	669.83, 524.16, 631.96, 774.43, 814.46, 955.66
RDs) o peaks	Acid traps	First one	366.24, 79.79, 285.78, 328.15, 639.32, 724.95	669.96, 524.75, 631.78, 774.76, 815.35, 956.55
ls (CT photo		Second one	365.53, 248.81, 637.88	669.84 669.31, 523.93, 631.66, 774.08,
ntroid Y-	Alkali receivers	First one Second one	365.8, 80.03, 285.37, 327.55, 638.57, 724.31 366.22, 82.46, 285.75,	812.39, 956.31, 1297.03 669.94, 775.44
ů		Second one	641.68	
	Char	coal filter	Not detected	Not detected
ion)		Before boiling	9489600	863880 158100
opeak e solut	F.P Solution	After boiling for 2 h After boiling for 3 h	1358700	40635
-photo e of th		After boiling for 3.5 h		21000
Net area under the main y-photopeak (normalized to the total volume of the solution)		First one	2102886	36705
er the	Acid traps	Second one	147090	2455
s und		First one	6450935	103860
vet are talized	Alkali receivers	Second one	533240	8340
norm)	CI	narcoal filter	-	-

In most cases, no detectable amounts of radioiodine were found in the charcoal filter at end of the distillation process.

The fraction of the volatilized ¹³¹I, < 2.68 %, which was not recovered in the acid traps or in the alkali receivers might be condensed during passage of the air current through the water-cooled condenser. A part of it deposited on the glass walls of the condenser and the other part was collected along with the condensed vapors of the sulfuric acid in the conical flask attached to the condenser.

The fraction of ¹³¹I found in the acid traps may support the suggestion that ionic species of iodine might be formed and distilled off during distillation of I₂ (Section 3.3.1). For example, HIO₃ gives monomeric IO₂HSO₄ in a dilute solution of sulfuric acid. Also, the so-called iodosyl sulfate (IO)₂SO₄, which is a yellow solid, obtained by the action of H₂SO₄ on I₂O₅. (IO)₂SO₄ has polymeric (I-O)_n chains cross-linked by the anion (Cotton and Wilkinson, 1979).

3.3.2.2. Radionuclidic purity:

The first alkali receiver was chosen to calculate radionuclidic purity of the recovered 131 I, because of its higher radioactivity. Radionuclidic purity of 131 I is defined as "fraction of γ -radioactivity of the first alkali receiver contributed to 131 I to the total γ -radioactivity". According to radiometric analysis data mentioned in Table 3.3, the radionuclidic purity of 131 I recovered in the first alkali trap was found to be 98.28 % measured immediately at end of the distillation process. Radiometric analysis data showed that 1.72 % of the total γ -radioactivity of the first alkali receiver was due to 132 I. No further radionuclides were identified in the acid traps or in the alkali receivers.

Radionuclides of the first alkali receiver (131 and 132 I) were further identified by their characteristic half-lives obtained from their decay curves

as indicated in Figures 3.8 and 3.9. Figure 3.8 (a and b) shows the gross-gamma radioactive decay curves of the first alkali trap of the radioiodine-recovery system followed for 24 h and 190 h, while Figure 3.9 (a and b) shows the individually analyzed decay curves of ¹³¹I and ¹³²I. After 140 d, no residual radioactivity was detected in the first alkali receivers. Slopes of the decay curves of ¹³¹I and ¹³²I (Figure 3.9, a and b) were corresponding to half-lives of 8.4 d and 2.3 h, respectively.

3.3.2.3. Radiochemical purity:

The first alkali receiver was chosen to calculate the radiochemical purity of the radioiodine product, because it received majority of the radioiodine. Radiochemical purity of the iodine product is defined as "ratio of the iodine γ-radioactivity found in the desired chemical form, i.e., I, to the total y-radioactivity of iodine". By using a strip of "Whatman No. 1" paper (25 cm long and 1.5 cm wide) as a stationary phase and a mixture of 70 % methanol and 30 % H₂O as the developing mobile phase in an ascending paper chromatography technique, one R_f value (Equation 2.8) of ~ 0.73 was obtained in agreement with the published R_f value (0.7) which may refer to the presence of I and/or I3 ions (Baldwin, 1986). To be sure that the R_f value of ~ 0.73 obtained with "Whatman No.1" paper referred only to I and not to I3, the same procedure was carried out using a strip of TLC with silica gel (also 25 cm long and 1.5 cm wide) and a solvent consisted of a mixture of isopropyl alcohol, ethyl acetate, 6 M ammonium hydroxide, and acetone (35:30:25:20 by volume, respectively). In this case, R_f value of ~ 0.8 was obtained in agreement with the published R_f value (0.82) which refers only to the presence of I ion (Baldwin, 1986).

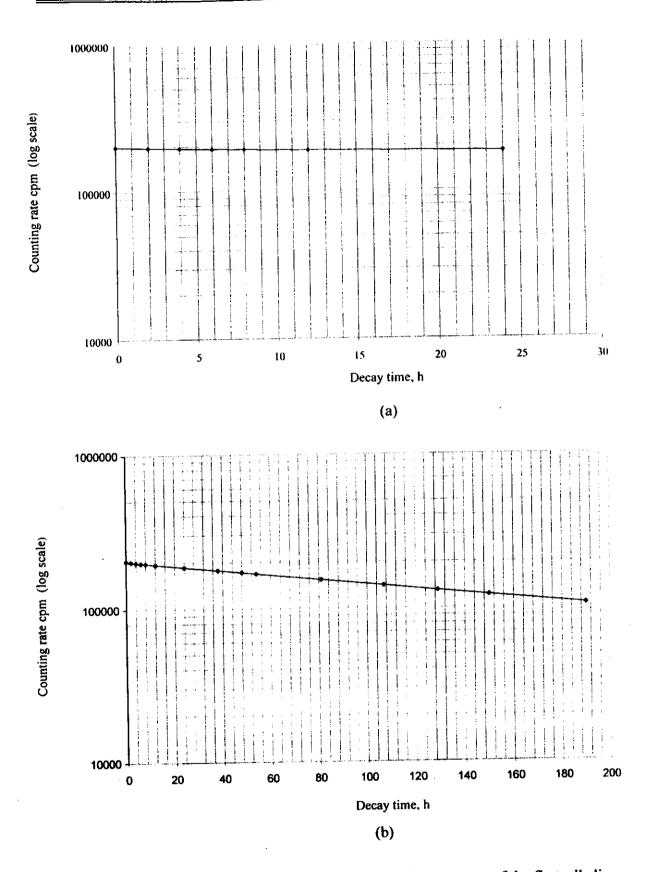


Figure 3.8. Gross-gamma radioactive decay curves of the first alkali receiver of the radioiodine-recovery system followed for (a) 24 h and (b) 190 h.

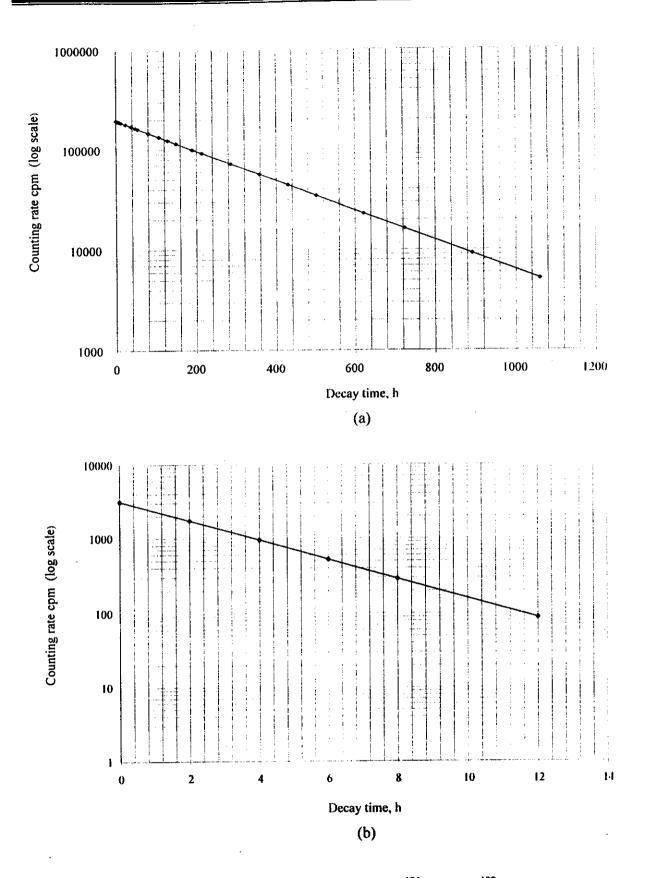


Figure 3.9. Individual decay curves of (a) ¹³¹I and (b) ¹³²I recovered in the first alkali receiver of the radioiodine-recovery system.

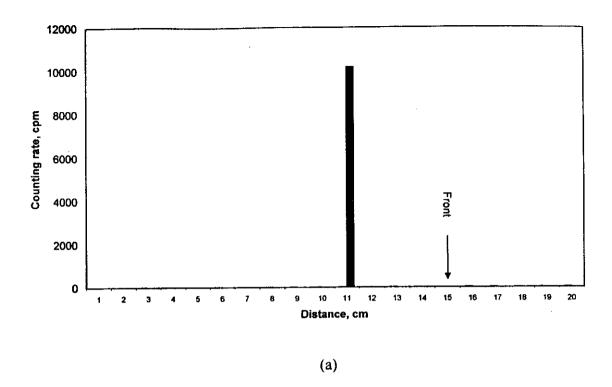
Figure 3.10 (a and b) shows the radiochromatograms of the ¹³¹I product obtained by using "Whatman No.1" paper and by using the TLC (with silica gel). With "Whatman No.1" paper, radiochemical purity (as I') was found to be 99.81 %, while it was 99.76 % with TLC.

3.3.2.4. pH-value of the product solution:

At end of the radioiodine distillation process, pH-value of both of the first and second alkali receivers was found to be 12.8; this value is suitable to avoid formation of volatile elemental iodine.

3.3.2.5. Radioactivity and specific activity:

Radioactivity of the recovered ^{131}I , $A_{(l-131)}$, was calculated according to:


$$A_{(l-131)} = R_{(l-131)alk} \left(A_{\theta(l-131)} e^{-\lambda_{(l-131)} t} \right)$$
 (3.1)

Where,

 $A_{0(l-13l)}$ = radioactivity of ¹³¹I obtained at end of irradiation, it was calculated by using Equation (1.3).

t = elapsed time period between end of the target irradiation and completion of the radioiodine separation (8 d).

For weights of 0.02, 0.06, and 0.1 g of the irradiated UO₃ targets, calculated values of $A_{(I-13I)}$ were found to be < 898, < 2694, and < 4490 μ Ci, respectively. Radioactivity of the recovered ¹³¹I was, of course, lower than the calculated value because there was a fraction of the fission-iodine escaped during the irradiation, cooling, and digestion processes.

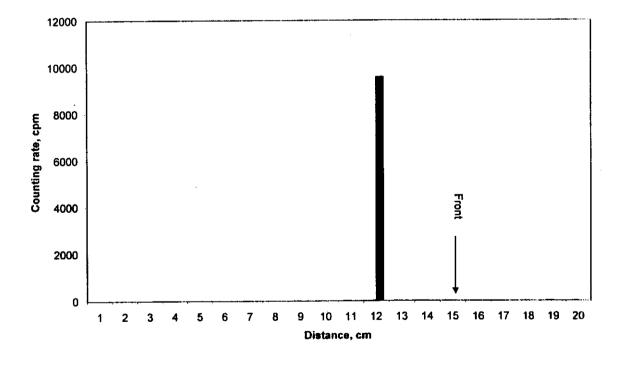


Figure 3.10. Radiochromatograms of the ¹³¹I product obtained by using (a) "Whatman No.1" paper and (b) TLC (with silica gel).

(b)

Specific activity of the produced ¹³¹I (μ Ci/ml) could be calculated by dividing $A_{(I-13I)}$ by total volume of the two alkali receivers (20 ml), after mixing them. For weights of 0.02, 0.06, and 0.1 g of the irradiated UO₃ targets, calculated specific activities of the recovered ¹³¹I were found to be < 45, < 135, and < 225 μ Ci/ml, respectively. Alternatively, the two alkali receivers of the radioiodine-recovery system might not be mixed to keep the higher specific-activity of ¹³¹I in the first alkali receiver. Table 3.4 compiles the quality control data of the ¹³¹I product.

3.3.3. Precautions of separation, handling, and storage of radioiodine:

Volatility of the elemental iodine, as molecular I₂, is the most significant problem accompanying this element. When the radioiodine is to be separated (from the other fission products), handled, or stored, the following precautions must be taken into consideration:

- 1. Before its use, the radioiodine-recovery system must be tested to ensure that there is no leakage in pass of the radioiodine; this is to avoid the internal contamination with radioiodine via smelling.
- 2. Solutions containing radioiodide ions should neither be made acidic, nor stored frozen; both lead to formation of the volatile elemental iodine (Liverpool University, 2001). When possible, solutions containing radioiodide ions should be kept having pH above 8.
- 3. Simply opening a vial of Na¹³¹I at a high radioactive concentration can cause minute droplets to become airborne. Vials containing radioiodine should be opened in the fume hood.
- 4. Double gloves should be worn during handling of radioiodine, as iodine has been shown to penetrate one thickness of plastic gloves (Suny Upstate Medical University, 2001).

Table 3.4. Quality control data of the ¹³¹I product.

	Separation yield, $S_{(l-13l)}$	> 99,99 %
	Production yield, R _{(f-131)alk}	73.6 %
	Radionuclidic purity	98.28 %
	% Other radionuclides	1.72 % ¹³² I
cal purity de), %	By using "Whatman No.1" paper	99.81 %
Radiochemical purity (as iodide), %	By using TLC (with silica gel)	99.76 %
L	pH-value	12.8
ijŢ	0.02 g of UO ₁	< 898
Calculated radioactivity, μCi	0.06 g of Uo ₃	< 2694
Ca radio	0.1 g of UO ₃	< 4490
(CVm)	0.02 g of UO ₃	< 45
Calculated specific activity, µCi/ml	0.06 g of UO ₃	< 135
Cs specific a	0.1 g of UO ₃	< 225

3.4. Production of radioruthenium:

Figure 3.1 (b) indicates presence of the γ-photopeaks of ¹⁰³Ru (499.42 and 366.33 keV). Fission reactions of ²³⁵U give rise to seven ruthenium isotopes; ⁹⁹Ru, ¹⁰¹Ru, ¹⁰²Ru, ¹⁰³Ru, ¹⁰⁴Ru, ¹⁰⁵Ru, and ¹⁰⁶Ru. The isotopes of 99Ru, 101Ru, 102Ru, and 104Ru are stable ones, whereas 105Ru $(T_{1/2} = 4.44 \text{ h})$ decayed practically, completely during the seven-days cooling period. Ruthenium-103 ($T_{L/2} = 39.27$ d) and ruthenium-106 $(T_{1/2} = 1.02 \text{ y})$ are the most important fission-ruthenium isotopes. More than 95 % of 103 Ru decays to 103m Rh ($T_{L/2}$ = 56.12 min) which in turn decays to the stable ¹⁰³Rh. Remaining of ¹⁰³Ru (<5 %) decays directly to ¹⁰³Rh. ^{103m}Rh did not appear in any of gamma spectra of this work because of its low-energy gamma rays (39.76 keV). ¹⁰⁶Ru is a pure β'-emitter and decays to 106 Rh ($T_{1/2} = 29.9$ s) which in turn decays to stable 106 Pd. Figure 3.11 (a and b) shows decay chains of 103Ru and 106Rh as 235U-fission products, while Table 3.5 compiles the nuclear characteristics and fission yields of the ruthenium and rhodium isotopes produced from fission reactions of ²³⁵[]

Ruthenium is one of the most troublesome elements in nuclear chemical engineering, where it causes many problems during reprocessing of the spent nuclear fuel by the PUREX process and the following aqueous waste treatment because of its multiple valence states and complex chemistry (Lee and Bang, 1983; Sato, 1989).

Ruthenium-103 is produced with a fission yield of 3.03 % and emits high-energy gamma rays (91.1 % of 497.04 keV). It has important applications in nuclear medicine in fields of myocardial blood flow, radiolabeling microspheres, and positron emission tomography (PET) imaging (NMRC, 1998).

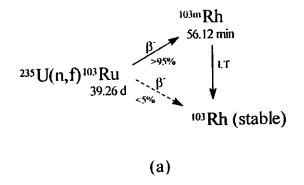


Figure 3.11. Decay chains of (a) ¹⁰³Ru and (b) ¹⁰⁶Rh as ²³⁵U-fission products.

Table 3.5. Nuclear characteristics and tission yields of the ²³⁵U-fission ruthenium and rhodium isotopes.

Isotope		1 1	Fission yield, Y_f	· I	Main γ-energy (abundance), and other γ- energies in keV
	⁹⁹ Ru	Stable		-	-
	¹⁰¹ Ru	Stable	5.17 %	-	• .
topes	¹⁰² Ru	Stable	4.3 %	-	*
m iso	103 Ru	39.27 d	3.03 %	β	497.04 (91.1%), 363.5, 557, 610.33,
Ruthenium isotopes	¹⁰⁴ Ru	Stable	1.88 %	-	-
Rut	103Ru	4,44 h	0.964 %	β	724.2 (49 %), 316.5, 469.38, 676.32,
	106Ru	1.02 y	0.402 %	β	-
<u>.</u>	^{103m} Rh	56.12 min	3.03 %	1.1	39.76 (0.068 %)
obes	¹⁰³ Rh	Stable	3.03 %	-	-
Rhodium isotopes	105mRh	40 s	0.964 %	I.T	129.53 (20.2 %)
	res Rh	35.36 h	0.964 %	β	319.24 (19.2 %), 306.31, 319.14,
	106Rh	29.9 s	0.402 %	β	511.80 (20.5 %), 621.80,

3.4.1. Separation technique:

After separation of radioiodine, the still of the radioiodine-recovery system (containing the acidified fission-products solution) was connected to the radioruthenium-recovery system (Figure 2.2). Excess of sulfuric acid was added to the fission-products solution along with KMnO₄. Under these conditions, potassium permanganate is reduced according to:

$$MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$$

while ruthenium is oxidized to ruthenium tetroxide, RuO4, (Cotton and Wilkinson, 1979; Lee and Bang, 1983). RuO₄ is a volatile yellow compound (m.p. 25.5°C) (Lide, 1992-1993) which sublimes at room temperature. To promote volatilization of the formed RuO₄ from the fission-products solution, boiling was applied. Figure 3.12 (a and b) shows the gamma spectra of the fission-products solution (after separation of ¹³¹I) before and after boiling of the acidified fission-products solution (40 % H₂SO₄) for 40 min. In a similar manner as shown for recovery of fission radioiodine, an air current was introduced to the still to carry the volatilized RuO₄. The air current passed through a water-cooled condenser and subsequently through two successive alkali receivers (containing 15 and 5 ml of 0.1 M NaOH solution, respectively). The second alkali receiver was introduced to recover any traces of the ruthenium tetroxide which might escape from the first receiver. After emerging from the second alkali receiver, the air current passed through a nitrogen-cooled charcoal filter to absorb any traces of radioruthenium that might escape from the second alkali receiver. Finally, the air current passed through the pump to the ventilation.

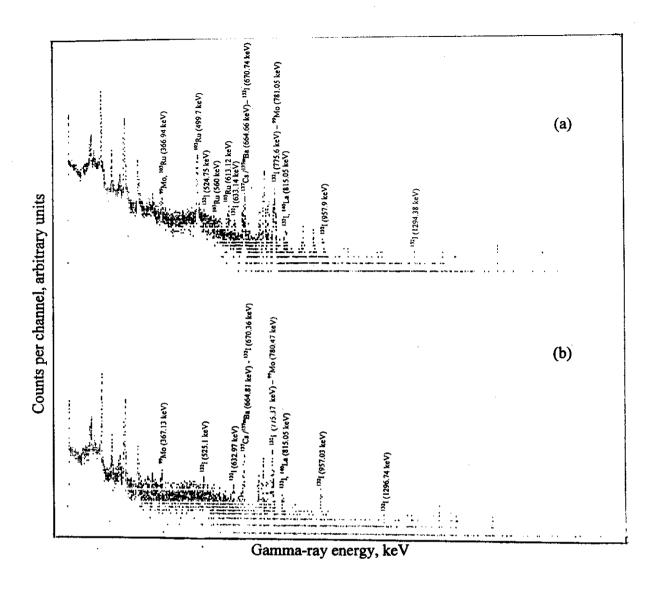


Figure 3.12. Gamma spectra of the fission-products solution (a) after separation of \$^{131}\$I and (b) after raising concentration of \$H_2\$SO_4 to 40 % and boiling for 40 min.

In the NaOH solution, ruthenium tetroxide is dissolved and reduced to form perruthenate, RuO₄, which is then reduced again to form ruthenate according to the following two equations (Cotton and Wilkinson, 1979):

$$4RuO_4 + 4OH$$
 \rightarrow $4RuO_4 + 2H_2O + O_2$
perruthenate
$$4RuO_4 + 4OH \rightarrow$$

$$4RuO_4^2 + 2H_2O + O_2$$
ruthenate

3.4.2. Quality control of the 103Ru product:

3.4.2.1. Separation and recovery yields:

Figure 3.13 shows the gamma spectrum of the alkali receiver of the radioruthenium-recovery system after boiling the acidified fission-products solution for 40 min. As shown in Figure 3.13, three isotopes were appeared in the gamma spectrum of the first alkali receiver; these were ¹⁰³Ru, ¹⁰⁶Rh and ¹³²I.

Table 3.6 compiles the radiometric analysis data of the isotopes 103 Ru, 106 Rh, and 132 I in (i) the fission-products solution before distillation of the ruthenium tetroxide and after boiling for 40 min, and (ii) the first alkali receiver of the radioruthenium-recovery system after boiling for 40 min. It was found that boiling of the acidified fission-products solution (15 ml of 40 % sulfuric acid containing 0.01 g of KMnO₄) for 40 min was quite sufficient to remove more than 99.99 % of 103 Ru, i.e., separation yield of 103 Ru ($S_{(Ru-103)}$) was > 99.99 %. The recovery yield, i.e., production yield, of 103 Ru ($R_{(Ru-103)}$) defined by Equation 2.5 was found to be 65.03 % and totally collected in the first alkali receiver. No radioactivity was detected in both the second alkali receiver and the charcoal filter. The fraction of the distilled off 103 Ru which was not detected in the alkali receivers (<34.96 %), might be deposited on walls of the condenser and could be

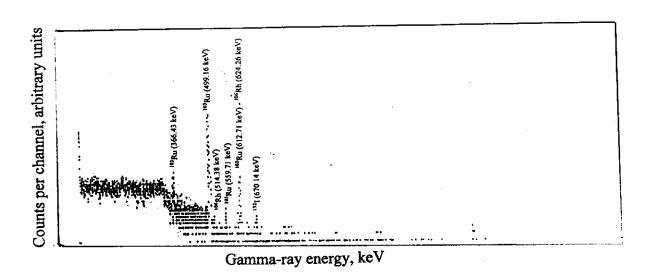


Figure 3.13. Gamma spectrum of the alkali receiver of the radioruthenium-recovery system.

Table 3.6. Radiometric analysis data for separation and recovery of ¹⁰³Ru.

	Isoto	ppe	¹⁰³ Ru	¹⁰⁶ Rh	¹³² J
eaks in		Before boiling	499.7, 366.94, 560, 613.12	Not detected	670.74, 524.75, 633.14, 775.6, 815.05, 957.9, 1294.38
CTRDs of the obtained y-photopeaks in keV	F.P solution	After boiling for 40 min	Not detected	Not detected	670.36, 525.1, 632.97, 775.37, 815.05, 957.03, 1296.74
he obtained keV	Alkali receivers	First one	499.16, 366.43, 559.71, 612.71	514.38, 624.26	670.14
Ds of tl		Second one	Not detected	Not detected	Not detected
CTR	Cha	rcoal filter	Not detected	Not detected	Not detected
peak ne of	F.P Solution	Before boiling	325740	_	34560
y-photo al volun n)		After boiling for 40 min	-	-	23772
Net area under the main y-photopeak (normalized to the total volume of the solution)	Alkali receivers	First one	211825	11100	7865
		Second one	-	-	_
Net are (nor		Charcoal filter	-	•	_

easily recovered by washing the condenser with a few milliliters of 0.1 M NaOH solution.

3.4.2.2. Radionuclidic purity:

According to the data given in Table 3.6, Radionuclidic purity of the recovered 103 Ru, i.e., fraction of the total γ -radioactivity of the first alkali receiver contributed to 103 Ru, was found to be 91.78 % at end of the ruthenium tetroxide distillation process. Radionuclide contaminants of 4.81 % and 3.41 % of the total γ -radioactivity of the first alkali receiver were due to 106 Rh and 132 I, respectively.

Presence of ¹³²I along with ¹⁰³Ru in the first alkali receiver was due to volatilization of the former, which was continuously generated in the fission-products solution from the decay of its parent nuclide ¹³²Te. Contribution of the ¹³²I radioactivity to the total radioactivity of the alkali receiver of the radioruthenium recovery-system depends on the time left from end of the ¹³¹I separation process to beginning of the ¹⁰³Ru separation process (considering the irradiation time, the neutron flux, and the cooling time are constant). The time at which the ¹³²I generated from ¹³²Te reaches its maximum radioactivity, T_{max} , is ~12 h and can be calculated as follows (Choppin and Rydberg, 1980):

$$T_{max} = \frac{\ln (\lambda_1 / \lambda_2)}{\lambda_2 - \lambda_1}$$
 (3.2)

Where,

 $\lambda_1 = \text{decay constant of}^{-132} \text{Te} (8.86 \times 10^{-3} \text{ h}^{-1}).$

 $\lambda_2 = \text{decay constant of}^{132} \text{I } (0.30 \text{ h}^{-1}).$

3.4.2.3. pH-value of the product solution:

At end of the distillation process, pH-value of the first alkali receiver, of the radioruthenium-recovery system, was found to be 12.

3.4.2.4. Radioactivity and specific activity:

Radioactivity of the recovered 103 Ru, $A_{(Ru-103)}$, was calculated according to:

$$A_{(Ru-103)} = R_{(Ru-103)alk} \left(A_{0(Ru-103)} e^{-\lambda_{(Ru-103)} I} \right)$$
 (3.3)

Where,

 $A_{0(Ru-103)}$ = radioactivity of ¹⁰³Ru obtained at end of irradiation, it was calculated by using Equation (1.3).

Separation of 103 Ru took less than one hour, so that t in Equation (3.3) was also considered to be 8 d. For weights of 0.02, 0.06, and 0.1 g of the irradiated UO₃ targets, calculated values of $A_{(Ru-103)}$ were found to be 293, 880, and 1466 μ Ci, respectively.

Specific activity of 103 Ru (μ Ci/ml) could be calculated by dividing $A_{(Ru-103)}$ by volume of the first alkali receiver solution (18 ml). Thus for weights of 0.02, 0.06, and 0.1 g of the irradiated UO₃ targets, calculated specific activities of the recovered 103 Ru were found to be 16, 49, and 81 μ Ci/ml, respectively. Table 3.7 shows the quality control data of the 103 Ru product.

3.4.3. Precautions of separation of radioruthenium:

In addition to risks of the internal contamination with its radioactivity by smelling, ruthenium tetroxide vapor is irritating to the eyes and respiratory tract. Because of these risks, pass of the RuO₄ vapor in the

Table 3.7. Quality control data of the ¹⁰³Ru product.

Sep	aration yield, $S_{(Ru-103)}$	> 99,99 %	
Re	covery yield, R _(Ru-103)	65.03 %	
R	adionuclidic purity	91.78 %	
%	Other radionuclides	4.81 % ¹⁰⁶ Rh and 3.41 % ¹³² l	
	pH value	12	
μCi	0.02 g of UO ₃	293	
Calculated radioactivity, μCi	0.06 g of UO ₃	880	
Caradio	0.1 g of UO ₃	1466	
Ci/ml	0.02 g of UO ₃	16	
lculated ctivity, µ	0.06 g of UO ₃	49	
Calculated specific activity, µCi/ml	0.1 g of UO;	81	

radioruthenium-recovery system should be tested against leakage before the use.

3.5. Batch separation of Sr, Ba, La, and Ce radionuclides:

3.5.1. Separation technique:

In the acidified fission-products solution, both of the strontium and barium isotopes formed acid-insoluble sulfates; SrSO₄ and BaSO₄, respectively (Agasyan, 1980). The concentrations of carrier-free strontium and barium, produced from ²³⁵U-fission reactions, are very small and subsequently, the formed SrSO₄ and BaSO₄ were very small so that these sulfates were not precipitated (Figure 3.14, a). Thus, addition of inactive barium as a carrier to the acidified fission-products solution was necessary to carry down the formed fission-barium and -strontium sulfates. Barium chloride carrier was prepared by dissolving barium carbonate in hydrochloric acid according to:

$$BaCO_3 + 2HCl \longrightarrow BaCl_2 + H_2O + CO_2$$

Before addition of BaCl₂ solution, the acidified fission-products solution was transferred from the still to a conical flask. On adding BaCl₂ (dropwise to attain homogeneity), the formed BaSO₄ precipitated, carrying with it the sulfates of fission barium and strontium, according to the following equation (Agasyan, 1980):

$$BaCl_2 + H_2SO_4$$
 \longrightarrow $BaSO_4$ + 2HCl

Since Ba²⁺ was added to an excess of SO₄²⁻, the formed BaSO₄ precipitate was considered to be surrounded by SO₄²⁻ ions. These charge-like particles repelled each other and, subsequently, the precipitate particles

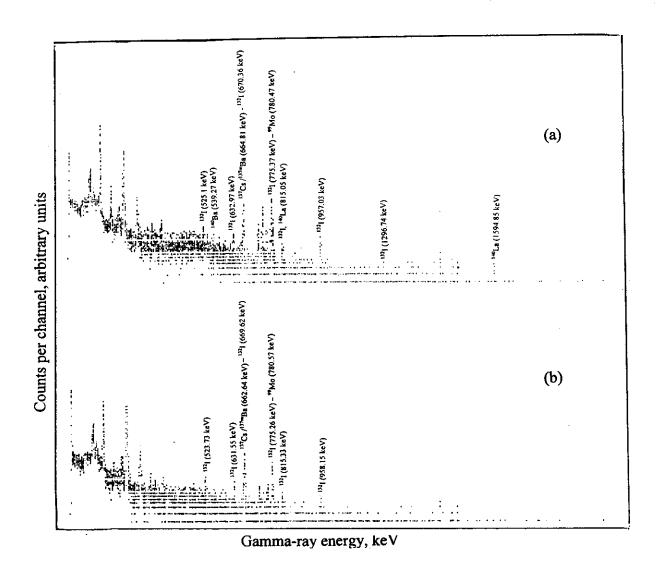


Figure 3.14. Gamma spectra of the fission-products solution (a) before addition of BaCl₂ and (b) after addition of BaCl₂ and separation of the formed precipitate.

(Seely, 2001). These negatively charged barium sulfate particles adsorbed some cations from the solution. Most of these cations were removed by washing of the formed precipitate as will be mentioned below. To obtain complete precipitation of the barium sulfate, the solution should be either heated (not boiled) for 1 h to enhance coagulation of the precipitated particles, or allowed to stand at the laboratory temperature for about 18 h (Vogel, 1961).

After complete precipitation of BaSO₄, the fission-products solution was withdrawn and centrifuged to ensure that it became free from any traces of the BaSO₄ precipitate. Figure 3.14 (a and b) shows the gamma spectra of the fission-products solution before and after addition of the BaCl₂ solution and separation of the formed BaSO₄ precipitate. The precipitate was suspended in and washed by 40 % H₂SO₄, where it was transferred semi-quantitatively from the conical flask and filtered on a Whatman No. 1 filter paper to wash out (desorb) the adsorbed cations. Comparing the gamma spectra obtained in (a) and (b) of Figure 3.14 indicates that, addition of 20 mg BaCl₂ to the fission-products solution was sufficient for complete separation of ¹⁴⁰Ba and ¹⁴⁰La.

While the barium sulfate precipitate is white, the formed precipitate was pink (even after washing) this is due to coprecipitation of some KMnO₄ with BaSO₄ by forming a mixed crystal (Nesmeyanov, 1974; Agasyan, 1980). The remaining KMnO₄ was still in the acidified fission-products solution as indicated by the pink color of the solution. Faster growth of the BaSO₄ precipitate crystals increases the coprecipitation by occlusions, in which ions of the solution can be adsorbed and trapped inside the crystal because these adsorbed ions may not be desorbed before the next larger crystal growth, and mechanical entrapment, in which a part of the solution may be entrapped as a result of the crystalline mass

formation by the several small crystals physically lying close together during the growth. The ions adsorbed by occlusions and/or mechanical entrapment cannot be removed by washing. On contrast, occlusions and mechanical entrapment can be minimized by slow precipitation from homogeneous solution (Rengan et al., 1993). Thus in this work the fission-products solution was eventually allowed to stand until complete precipitation of BaSO₄.

3.5.2. Radiometric analysis of the formed precipitate:

Figure 3.15 shows the gamma spectrum of the formed BaSO₄ precipitate after washing with 40 % H_2 SO₄. Table 3.8 compiles the nuclear and radiometric analysis data for the process of batch precipitation with BaSO₄. As shown in Figure 3.15, the formed barium sulfate precipitate contains (i) $^{90\text{m}}$ Y ($T_{1/2} = 3.19 \text{ h}$), (ii) 132 l, (iii) $^{137\text{m}}$ Ba ($T_{1/2} = 2.55 \text{ min}$), (iv) 140 Ba ($T_{1/2} = 12.75 \text{ d}$) and its daughter 140 La ($T_{1/2} = 1.68 \text{ d}$), (v) 141 Ce ($T_{1/2} = 32.5 \text{ d}$), (vi) 143 Ce ($T_{1/2} = 1.38 \text{ d}$), and (vii) 144 Ce ($T_{1/2} = 284.6 \text{ d}$).

132 I was carried down by the BaSO₄ precipitate by surface adsorption mechanism. The BaSO₄ precipitate contained only traces of both ¹³²I and ^{137m}Ba because of washing and volatilization of a great fraction of the former and rapid decay of the latter (a decay product of ¹³⁷Cs) due to its short half-life (2.55 min).

Disappearance of ¹⁴⁰La from the fission-products solution after precipitation of BaSO₄ indicated that ¹⁴⁰La itself was precipitated from the solution, i.e., only a fraction of ¹⁴⁰La found in the precipitate was produced from decay of ¹⁴⁰Ba after precipitation of BaSO₄, while the remaining of it was carried down from the fission-products solution during precipitation of BaSO₄. Presence of ¹⁴⁰La and ¹⁴¹Ce in the BaSO₄ precipitate might be due to formation of the double salts La₂(SO₄)₃.3Na₂SO₄.2H₂O and

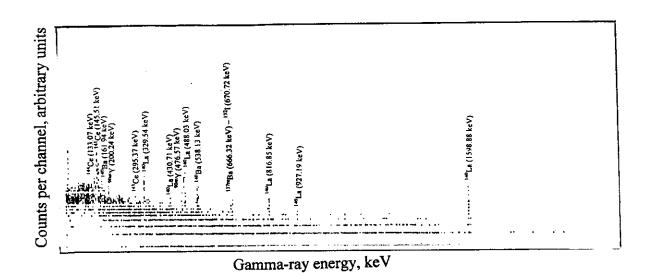


Figure 3.15. Gamma spectrum of the formed $BaSO_4$ precipitate after washing with $40 \% H_2SO_4$.

Table 3.8. Nuclear and radiometric analysis data for the process of batch precipitation with BaSO₄.

Isotope	Half-life,	Fission yield,	Decay mode	Main γ-energy (abundance), and other γ-energies in	CT1 γ-1		
;	T _{1/2}	Y_f			F.P so	D 60	
		keV		Before adding BaCl ₂ solution BaCl ₂ solution		BaSO ₄ precipitate	
90mY	3.19 h	5.78 %	I.T	202.51(96.6%), 479.53,	Not detected	Not detected	200.24, 476.57
132 _I	Table 3.2				670.36, 525.1, 632.97, 775.37, 815.05, 957.03, 1296.74	669.62, 523.73, 631.55, 775.26, 815.33, 958.15	670.72
^{137m} Ba	2.55 min	5.85 %	I.T	661.6 (89.9 %) 624.2, 655.7	664.81	662.64	666.32
¹⁴⁰ Ba	12.75 d	6.21 %	β	537.60 (24.4 %), 162.90,	539.27	Not detected	538.13, 161.94
¹⁴⁰ La	1.68 d	6.22 %	β-	1596.60 (95.4 %), 328.77, 432.55, 487.03, 815.83, 925.23,	1594.85, 815.05	Not detected	1598.88, 329.54 430.71, 488.03, 816.85, 927.19
¹⁴¹ Ce	32.5 d	5.85 %	β-	145.45 (48.3 %), 103.4,	Not detected	Not detected	145.51
¹⁴³ Ce	1.38 d	5.96 %	β-	293.2 (43.4 %), 664.59, 721.98,	Not detected	Not detected	295.37
¹⁴⁴ Ce	284.6 d	5.5 %	β-	133.53 (11 %), 80.12	Not detected	Not detected	133.07

Ce₂(SO₄)₃.3Na₂SO₄.2H₂O, respectively, in the acidified-fission products solution (Mellor, 1960; Library of Congress, 1997). Since Na₂SO₄, in which these double salts are sparingly soluble, was present in the solution in very large amount relative to the double salts formed by lanthanum and cerium, these double salts came out from the solution (Mellor, 1960; Cotton and Wilkinson, 1979), but they did not precipitate (because of their very low concentrations) until the barium carrier was added to carry them down with the formed BaSO₄ precipitate.

The isotopes appeared in the BaSO₄ precipitate (Figure 3.15) decay as follows:

- 1. $^{90\text{m}}\text{Y}$ ($T_{L2} = 3.19$ h) decays to its isomer ^{90}Y ($T_{L2} = 2.67$ d) which finally decays to stable ^{90}Zr .
- 2. ¹³²I, as mentioned before in Section 3.3 and shown in Figure 3.5 (b), decays to stable ¹³²Xe.
- 3. 137mBa decays to stable 137Ba.
- 4. ¹⁴⁰Ba decays to ¹⁴⁰La which in turn decays to stable ¹⁴⁰Ce.
- 5. ¹⁴¹Ce decays to stable ¹⁴¹Pr.
- 6. ¹⁴³Ce decays to ¹⁴³Pr ($T_{1,2} = 13.57$ d) which finally decays to stable ¹⁴³Nd.
- 7. ¹⁴⁴Ce decays to ^{144m}Pr ($T_{F2} = 7.2$ min) which decays to its isomer ¹⁴⁴Pr ($T_{F2} = 17.28$ min) which, in turn, decays to the pure α -emitter ¹⁴⁴Nd ($T_{F2} = 2.1 \times 10^{15}$ y) which finally decays, via α -emission, to stable ¹⁴⁰Ce.
- 90 Y, 143 Pr, 144m Pr, and 144 Pr isotopes did not appear in the gamma spectrum of BaSO₄ precipitate because of the low-abundance gamma rays of their decay; 1.4×10^{-6} % of 2186.24 keV for 90 Y, 1.2×10^{-6} % of 741.98 keV for 143 Pr, 0.08 % of 59.03 keV and 0.033 % of 1631.4 keV for 144m Pr, and 1.3 % of 696.51 keV for 144 Pr. Figure 3.16 (a, b, c, d, and e) shows the decay chains of 90m Y, 140 Ba, 141 Ce, 143 Ce, and 144 Ce as 235 U-fission products.

235 U(n,f) ¹⁴⁰Xe
$$\frac{\beta}{13.6}$$
 $\frac{140}{63.7}$ $\frac{\beta}{140}$ $\frac{140}{13.6}$ $\frac{140}{13.6}$ $\frac{\beta}{140}$ $\frac{140}{13.6}$ $\frac{\beta}{140}$ $\frac{140}{13.6}$ $\frac{\beta}{140}$ $\frac{140}{13.6}$ $\frac{\beta}{140}$ $\frac{140}{13.6}$ $\frac{\beta}{140}$

Figure 3.16. Decay chains of (a) 90mY, (b) 140Ba, (c) 141Ce, (d) 143Ce, and (e) 144Ce as 235U-fission products.

In addition to ^{137m}Ba, ¹³⁷Ba, and ¹⁴⁰Ba, there are other eight ²³⁵U-fission-barium isotopes; these are ¹³⁵Ba, ¹³⁶Ba, ¹³⁸Ba, ¹³⁹Ba, ¹⁴¹Ba, ¹⁴²Ba, ¹⁴²Ba, and ¹³⁸Ba are stable ones. ¹³⁹Ba, ¹⁴¹Ba, ¹⁴²Ba, ¹⁴³Ba, and ¹⁴⁴Ba are all short-lived isotopes with half-life periods of 1.4 h, 18.3 min, 10.7 min, 14.33 s, and 11.5 s, respectively. These five barium isotopes decayed completely during the seven-days cooling period.

In addition to the aforementioned 235 U-fission cerium isotopes (140 Ce, 141 Ce, 142 Ce, 143 Ce, and 144 Ce), there is a more short-lived one; 146 Ce ($T_{1/2} = 13.52$ min), which decayed completely during the cooling time of seven-days.

Fission reactions of 235 U give rise to nine strontium isotopes, namely 86 Sr, 87 Sr, 88 Sr, 89 Sr, 90 Sr, 91 Sr, 92 Sr, 93 Sr, and 94 Sr. Of these isotopes, 86 Sr, 87 Sr, and 88 Sr are stable ones. Strontium-89 has a half-life period of 50.52 d, while the longest-lived fission-strontium isotope, 90 Sr, has a half-life period of 29.1 y. The isotopes of 91 Sr, 92 Sr, 93 Sr, and 94 Sr are short-lived isotopes with half-life periods of 9.5 h, 2.71 h, 7.4 min, and 75.2 s, respectively, so that these isotopes decayed completely during the seven-days cooling period. Strontium-89 decays to stable 89 Y, whereas 90 Sr, as shown in Figure 3.16 (a), decays to 90m Y. Strontium-89 has low-abundance gamma-rays of decay (0.01% of 909.1 keV), while 90 Sr is a pure β -emitter so that both of these two isotopes did not appear neither in gamma spectrum of the BaSO₄ precipitate nor in any other gamma spectra in this work. Presence of 90 Sr in the BaSO₄ precipitate was confirmed by appearance of its daughter (90m Y) in the gamma spectrum of the precipitate (where 90m Y found in the BaSO₄ precipitate was produced from the decay of 90 Sr after precipitation).

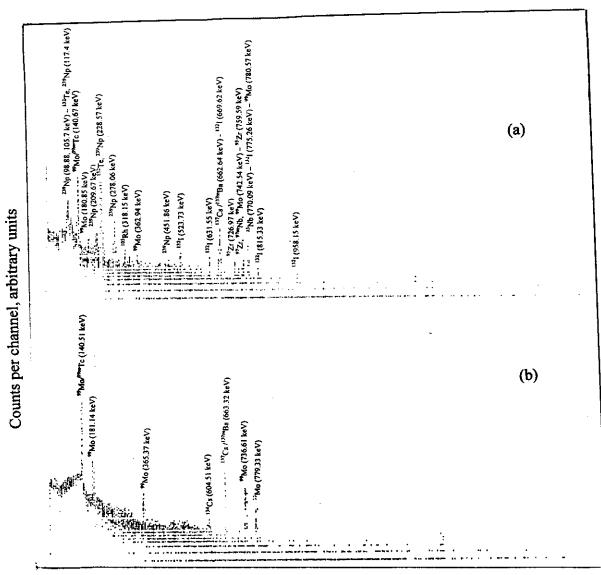
Table 3.9 compiles the nuclear characteristics and fission yields of the barium, lanthanum, cerium, yttrium, and strontium isotopes produced from fission reactions of ²³⁵U.

Table 3.9. Nuclear characteristics and fission yields of the ²³⁵U-fission barium, lanthanum, cerium, strontium, and yttrium isotopes.

Isotope		•	Fission yield,	Decay mode				
		$T_{I/2}$	Y_f		γ-energies in keV			
	¹³⁵ Ba	Stable		-	•			
ľ	136Ba	Stable	0.0062 %	<u> </u>	-			
	^{137т} Ва	Table 3.8						
Barium isotopes	137Ba	Stable	5.85 %	-	-			
ᅙ	138Ba	Stable	6.71 %	<u> </u>	- 1005			
<u>s</u>	139Ba	1.4 h	6.41 %	β-	165.85 (23.7 %), 126.9, 1420.5,			
5	140Ba	Table 3.8						
둝	141Ba	18.3 min	5.83 %	β	190.33 (46 %), 276.95, 304.18,			
~	¹⁴² Ba	10.7 min	5.75 %	β	255.12 (21.1 %), 895.2, 1204.3,			
ļ	143Ba	14.33 s	5.55 %	β-	211.5 (6.6 %), 798.7, 1010.7,			
Ì	144Ba	11.5 s	4.4 %	β	103.9 (25 %), 388.2, 430.5,			
	139La	Stable	6.41 %	•	-			
E s	140La			Table	3.8			
inthanu isotopes	141 La	3.9 h	5.85 %	β	1354.5 (1.6 %), 1693, 2267,			
Lanthanum isotopes	¹⁴² La	1.54 min	5.85 %	β-	641.21 (47.4 %), 2389, 2542.9,			
E.	143La	14.14 min	5.92 %	β	620.5 (1.5 %), 643.7, 798.5,			
	140Ce	Stable	6.22 %	-	-			
	¹⁴¹ Ce			Table	23.8			
mr bes	¹⁴² Ce	Stable	5.85 %		•			
Cerium isotopes	¹⁴³ Ce	Table 3.8						
ĕ. Ŭ	¹⁴⁴ Ce	Table 3.8						
	¹⁴⁶ Ce	13.52 min	2.99 %	β-	316.8 (52.5 %), 218.3, 133.6, ,			
	⁸⁶ Sr	Stable	~ 3.1× 10 ⁻⁵ %		•			
19 7	87Sr	Stable	2.7 %	-	-			
p e	88Sr	Stable	3.58 %	-	-			
50	89Sr	50.52 d	4.73 %	β-	909.1 (0.01 %), 891.9, 906.6			
. <u></u>	90Sr	29.1 y	5.78 %	β	-			
Strontium isotopes	91Sr	9.5 h	5.83 %	β	1024.25 (33.5 %), 652.98, 749.77,			
OII O	92Sr	2.71 h	5.94 %	β	1383.94 (93.3 %), 430.56, 953.32,			
Str	⁹³ Sr	7.4 min	6.24 %	β	590.28 (67.2 %), 875.73, 888.13,			
••	94Sr	75.2 s	6.06 %	β	1427.7 (94 %),723.8, 621.7, 703.9, .			
. 	89Y	Stable	4.73 %	·	<u> </u>			
S	90my			Tabl	e 3.8			
obe	90 _Y	2.67 d	5.78 %	β	2186.24 (1.4 × 10 ⁻⁶ %), 1760.7			
sot	91mY	49.71 min	2.332 %	I.T, β	555.57 (95 %)			
E	91Y	58.51 d	5.83 %	β	1204.77 (0.3 %)			
Ę	92Y	3.54 h	5.94 %	β	934.44 (13.7 %), 448.5, 1405.44,			
Yttrium isotop	93 Y	10.2 h	6.24 %	β	267.05 (6.8 %), 680.25, 947.07,			
	95Y	10.3 min	6.38 %	β-	954.2 (18.8 %), 2176, 3577.1,			

3.6. Batch separation of Zr, Nb, Te, and Np radionuclides:

3.6.1. Separation technique:


After separation of the formed BaSO₄ precipitate, the fission-products solution was transferred to another conical flask. Solution of FeCl₃, dissolved in 1 M HCl acid, was added to the fission-products solution dropwise with stirring to attain homogeneity. In such case, the following reaction occurs:

$$2FeCl_3 + 3H_2SO_4 \longrightarrow Fe_2(SO_4)_3 + 6HCl$$

After adding the FeCl₃ solution, the fission-products solution was left to withstand for ~15 min. Then, the pH-value was raised gradually and slowly (to minimize occlusions and mechanical entrapment) until it reached ~7. For complete settling of the formed Fe₂O₃.nH₂O precipitate, the solution was left for about one hour. During raising pH-value of the fission-products solution, the remaining manganese precipitated as MnO₂ at pH = 3.5 according to the following redox reaction (Cotton and Wilkinson, 1979; Carus Chemical Company, 1997):

$$MnO_4^{-} + 2H_2O + 3e^{-} = MnO_2 \downarrow + 4OH^{-}$$

Complete precipitation of aluminum as Al(OH)₃ was achieved as the pH reached ~5 (Agasyan, 1980). After complete settling of the Fe₂O₃.nH₂O precipitate, the fission-products solution was withdrawn and centrifuged to ensure that it became free from any traces of the Fe₂O₃.nH₂O precipitate. Figure 3.17 (a and b) shows the gamma spectra of the fission-products solution before and after addition of 20 mg FeCl₃ and separation of the formed Fe₂O₃.nH₂O precipitate. The precipitate was suspended in and washed by distilled water, where it was transferred semi-quantitatively

Gamma-ray energy, keV

Figure 3.17. Gamma spectra of the fission-products solution (a) before addition of the FeCl₃ and (b) after addition of FeCl₃ and separation of the formed precipitate.

from the conical flask and filtered on a Whatman No. 1 filter paper. Comparing the gamma spectra obtained in (a) and (b) of Figure 3.17, indicates complete disappearance of 95 Zr, 97 Zr, 95 Nb, 97m Nb, 97 Nb, 105 Rh, 132 Te, 132 I, and 239 Np from the fission-products solution after addition of 20 mg FeCl₃ and separation of the formed Fe₂O₃.nH₂O precipitate at pH-value of ~ 7 .

One of the most conspicuous features of ferric iron in aqueous solutions is its tendency to hydrolyze and/or to form complexes. It has been established that hydrolysis (equivalent in the first stage to acid dissociation of the aquo ion) is governed in its initial stages by the following equilibrium constants:

$$\begin{aligned} &[Fe(H_2O)_6]^{3^+} = [Fe(H_2O)_5(OH)]^{2^+} + H^+ & k = 10^{-3.05} \\ &[Fe(H_2O)_5(OH)]^{2^+} = [Fe(H_2O)_4(OH)_2]^+ + H^+ & k = 10^{-3.26} \\ &2[Fe(H_2O)_6]^{3^+} = [Fe(H_2O)_4(OH)_2Fe(H_2O)_4]^{4^+} + 2H^+ & k = 10^{-2.91} \end{aligned}$$

In the last of these equations the binuclear species is believed to have the structure:

Even at the rather acid pH's of 2-3, the extent of hydrolysis is very great. In order to have solutions containing Fe³⁺ mainly (~99 %) in the form of the pale purple hexaquo ion, the pH must be around zero. As the pH-value is raised above 2-3, more highly condensed species than the binuclear one shown above are formed. The attainment of equilibrium becomes sluggish,

and some colloidal gels are formed. Ultimately hydrous ferric oxide $Fe_2O_3.nH_2O$ (which, with no evidence, commonly called ferric hydroxide) is precipitated as a red-brown gelatinous mass. At least a part of such precipitates seems to be the FeO(OH) (Cotton and Wilkinson, 1979). Complete precipitation of the Fe^{3+} ion occurs at pH = 3.5. In an ammoniacal solution, particles of the precipitate are positively charged as a result of adsorption of OH ions, acquiring a negative charge and therefore on coagulation carry down various cations. Conversely, In a weakly acid medium, particles of the precipitate are positively charged because of adsorption of the species $Fe(OH)_2^+$ or $Fe(OH)_2^{2+}$ and, as a result, it adsorbs various anions from the solution (Agasyan, 1980). Since it has a very large surface area, hydrous ferric oxide is used as a scavenger, where it scavenges actinides and many other elements by incorporating them into its gelatinous matrix (Glasstone, 1955; NEA, 1997).

3.6.2. Radiometric analysis of the formed precipitate:

Figure 3.18 shows the gamma spectrum of the formed Fe₂O₃.nH₂O precipitate after washing with distilled water. Table 3.10 compiles the nuclear and radiometric analysis data for the process of batch precipitation with Fe₂O₃.nH₂O.

According to Figure 3.18, it was found that the hydrous ferric oxide precipitate contained (i) 95 Zr ($T_{1/2}$ =64.02 d) and its daughter 95 Nb ($T_{1/2}$ = 34.97 d), (ii) 97 Zr ($T_{1/2}$ =16.9 h), its daughter 97 mNb ($T_{1/2}$ = 58.1 s), and its granddaughter 97 Nb ($T_{1/2}$ = 1.23 h), (iii) 105 Rh ($T_{1/2}$ = 35.36 h), (iv) 132 Te ($T_{1/2}$ = 3.26 d) and its daughter 132 I, and (v) 239 Np ($T_{1/2}$ =2.36 d). Coprecipitation of these isotopes with the hydrous ferric oxide precipitate can be elucidated as follows:

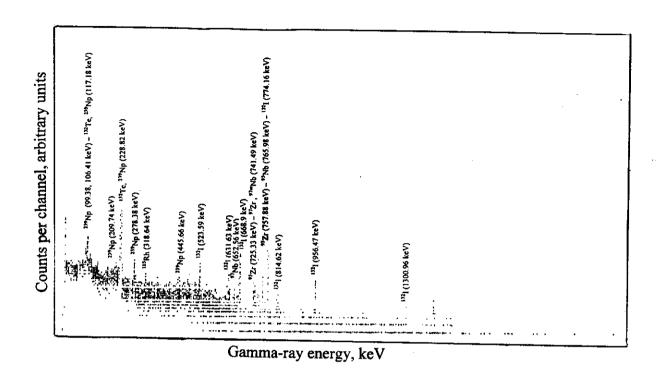


Figure 3.18. Gamma spectrum of the formed Fe₂O₃.nH₂O precipitate after washing with distilled water.

Table 3.10. Nuclear and radiometric analysis data for the process of batch precipitation with $Fe_2O_3.nH_2O$.

Isotope	Half-life, T _{1/2}	Fission yield, Y_f	Decay mode	Main γ-energy (abundance), and other γ-energies in keV	CTRDs of the obtained γ -photopeaks in keV		
					F.P solution		F 0 110
					Before adding FeCl ₃ solution	After adding FeCl ₃ solution	Fe ₂ O ₃ .nH ₂ O Precipitate
⁹⁵ Zг	64.02 d	6.5 %	β-	756.87 (54.6 %), 724.24,	759.59, 726.97	Not detected	757.88, 725.33
⁹⁷ Zr	16.9 h	5.98 %	β-	743.5 (92.8 %), 507.63,	742.54	Not detected	741.49
⁹⁵ Nb	34.97 d	6.5 %	β.	765.84 (99.8), 745.8, 	770.09	Not detected	765.98
^{97m} Nb	58.1 s	5.63 %	I.T	743.3 (97.9 %)	742.54	Not detected	741.49
⁹⁷ Nb	1.23 h	6%	β-	657.92 (98.3 %), 1024	Not detected	Not detected	652.56
¹⁰⁵ Rh			Table 3.5		318.15	Not detected	318.64
¹³² Te	3.26 d	4.31 %	β-	228.16 (88 %), 116.30,	228.57, 117.4	Not detected	228.82, 117.18
¹³² I		1	able 3.2		669.62, 523.73, 631.55, 775.26, 815.33, 958.15	Not detected	668.9, 523.59, 631.63, 814.62, 956.47, 1300.96
²³⁹ Np	2.36 d	Not a fission product	β-	106.4 (22.8 %), 99.5, 103.7, 209.8, 228.1, 277.9, 447.6,		Not detected	106.41, 99.38, 117.18, 209.74, 228.82, 278.38, 445.66

Zirconium isotopes (^{95}Zr and ^{97}Zr). In the acidified fission-products solution, zirconium was in the form of ZrSO₄.nH₂O, where n = 4, 5, or 7 (Cotton and Wilkinson, 1979; Etherington, 1958). Generally in the aqueous acidic solutions, Zr(IV) compounds present as partly hydrolyzed species, e.g., $[Zr_3(OH)_4]^{8+}$ and $[Zr_4(OH)_8]^{8+}$. Addition of a hydroxide to Zr(IV) solutions causes precipitation of the white gelatinous compound $ZrO_2.nH_2O$ (Housecroft and Sharpe, 2001). Thus during raising pH of the solution, zirconium might be coprecipitated with Fe₂O₃nH₂O as $ZrO_2.nH_2O$ in the pH-range 1.5-2 (Morozova et al., 1989). On the other hand, Kolenkova et al. (1980) recommended carrying out of the preliminary precipitation of Zr, Fe, Al at pH = 4.5.

Niobium isotopes (⁹⁵Nb, ^{97m}Nb, and ⁹⁷Nb). The oxidation state of +5 is the most common one for niobium in its compounds, lower oxidation states are less stable. Niobium(V) might exist in a variety of species at equilibrium in the acidified-fission products solution, e.g., [Nb₂O(SO₄)]⁶⁺ and Nb₂O₂(SO₄)₃ (Cotton and Wilkinson, 1979; Greenwood and Earnshaw, 1984). The hydrous niobium(V) oxide precipitate, Nb₂O₅.nH₂O, is obtained upon neutralization of the Nb(V)-acid solutions (Cotton and Wilkinson, 1979). Thus, on raising the pH-value of the solution to ~5, Nb₂O₅.nH₂O coprecipitates with Fe₂O₃.nH₂O and it becomes quantitatively precipitated as the pH-value is raised above 6 (Margalit and Seyeda, 2000).

Rhodium-105. Rhodium existed in the acidified fission-products solution in the form of the stable aquo ion $[Rh(H_2O)_6]^{3+}$ (Cotton and Wilkinson, 1979). Generally, $Rh_2O_3.5H_2O$ precipitates when alkali is added to the Rh(III) solutions (Greenwood and Earnshaw, 1984). Thus, rhodium was coprecipitated with $Fe_2O_3.nH_2O$ as $Rh_2O_3.5H_2O$ at pH=7.

Tellurium-132. Orthotelluric acid, Te(OH)₆, can be prepared by oxidation of tellurium or TeO₂ by H₂O₂, Na₂O₂, CrO₃, or other powerful

oxidizing agents (Cotton and Wilkinson, 1979; Aggarwal, 1987), Thus upon adding H₂O₂, which was added during acidification of the fission-products solution before separation of ¹³¹I, Te(OH)₆ might be formed. Te(OH)₆ is insensitive to concentration, temperature, and acidic pH. In basic pH-range of 6 to 10, Te(OH)₆ precipitate is formed (Minter and Iriarte-Gross, 2000).

Neptunium-239. Neptunium species, of oxidation numbers lower than VI, in the acidified fission-products solution were oxidized by KMnO₄ to Np(VI) (Nesmeyanov, 1974; 1984). During raising pH-value of the solution, neptunium(VI) coprecipitated with Fe₂O₃.nH₂O as NpO₂(OH)₂ in the pH-range 2-3 (Ahrland et al., 1975).

The isotopes appeared in the gamma spectrum of the Fe₂O₃.nH₂O precipitate have the following decay routes:

- 1. ¹⁰⁵Rh decays to stable ¹⁰⁵Pd.
- 2. ¹³²Te decays to ¹³²I which in turn decays to stable ¹³²Xe (Figure 3.5, b and Section 3.3).
- 3. 1.4 % of 95 Zr decays to 95m Nb ($T_{1/2} = 3.61$ d), which in turn decays to 95 Nb, which finally decays to stable 95 Mo, whereas 98.6 % of 95 Zr decays directly to 95 Nb. 95m Nb did not appear in any of the gamma spectra of this work because it has low fission yield ($Y_f = 0.0651$ %).
- 4. More than 95 % of 97 Zr decays to 97m Nb ($T_{1/2} = 58.1$ s), which in turn decays to 97 Nb ($T_{1/2} = 1.23$ h), which finally decays to stable 97 Mo, whereas less than 5 % of 97 Zr decays directly to 97 Nb.

Fission reactions of uranium-235 give rise to other six zirconium isotopes, in addition to 95 Zr and 97 Zr; 93 Zr ($T_{1/2} = 1.53 \times 10^6$ y) and the stable isotopes 90 Zr, 91 Zr, 92 Zr, 94 Zr, and 96 Zr. Zirconium-93 decays to 93 mNb ($T_{1/2} = 16.13$ y) which in turn decays to stable 93 Nb. Both of 93 Zr and 93 mNb did not appear in any of the gamma spectra of this work because of their low-energy characteristic gamma rays of decay (30.77 keV for both).

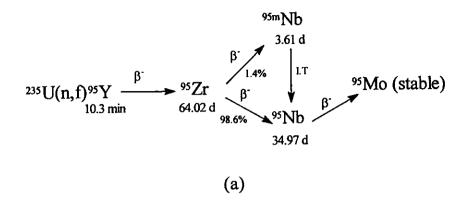
In addition to 132 Te, there are other 15 235 U-fission tellurium isotopes; $^{125\text{m}}$ Te, 126 Te, 126 Te, $^{127\text{m}}$ Te, 127 Te, 128 Te, $^{129\text{m}}$ Te, 129 Te, 130 Te, $^{131\text{m}}$ Te, 131 Te, $^{131\text{m}}$ Te, $^{131\text{m}}$ Te, and 135 Te. Of these tellurium isotopes, only three ones are stable; these are 125 Te, 126 Te, and 128 Te. The short-lived isotopes $^{133\text{m}}$ Te ($T_{1/2} = 55.4 \text{ min}$), 133 Te ($T_{1/2} = 12.4 \text{ min}$), 134 Te ($T_{1/2} = 41.8 \text{ min}$), and 135 Te ($T_{1/2} = 19 \text{ s}$) decayed completely during the seven-days cooling period. The isotopes of $^{125\text{m}}$ Te, $^{127\text{m}}$ Te, $^{129\text{m}}$ Te, and 130 Te decay as follows:

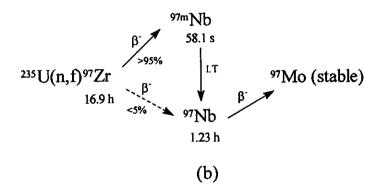
- 1. $^{125\text{m}}$ Te ($T_{1/2} = 58 \text{ d}$) decays to stable 125 Te.
- 2. 127m Te ($T_{1/2} = 109$ d) decays to 127 Te ($T_{1/2} = 9.4$ h) which in turn decays to the aforementioned stable 127 I.
- 3. $^{129\text{m}}\text{Te}\ (T_{1/2} = 33.6\ \text{d})$ decays to $^{129}\text{Te}\ \text{which in turn decays to the}$ aforementioned ^{129}I , which finally decays to stable ^{129}Xe .
- 4. 130 Te $(T_{1/2} = 2.5 \times 10^{21} \text{ y})$ decays to stable 130 Xe.
- 5. $^{131\text{m}}$ Te ($T_{1/2} = 1.35$ d) decays to 131 Te ($T_{1/2} = 25$ min) which in turn decays to the aforementioned 131 I (Figure 3.5, a and Section 3.3).

Tellurium-130 is a pure β-emitter. The isotopes of ^{125m}Te, ^{127m}Te, ¹²⁷Te, ^{129m}Te, ¹²⁹Te, and ^{131m}Te did not appear in any of the obtained gamma spectra of this work either because of (i) low-abundance gamma rays of decay, (ii) low fission-yield, or (iii) a combination of both. (i) and (ii). Fission yields of these tellurium isotopes are 0.0077 %, 0.025 %, 0.156 %, 0.09 %, 0.511%, and 0.412 % respectively, whereas abundances of their main gamma rays of decay are 6.7 % of 35.46 keV for ^{125m}Te, 0.3 % of 57.63 keV for ^{127m}Te, 0.9 % of 417.9 keV for ¹²⁷Te, 4.9 % of 695.98 keV for ^{129m}Te, 17.6 % of 27.8 keV and 8 % of 458.6 keV for ¹²⁹Te, and 38.6 % of 773.7 keV for ^{131m}Te. Tellurium-131 (Y_f = 2.89 %) did not also appear in the gamma spectra because, as shown in Figure 3.5 (a), the greater fraction of ¹³¹Te is produced from direct decay of ¹³¹Sb ($T_{I/2}$ = 23.03 min) which decayed completely during the cooling time of seven days. 91.6 % of ¹³¹Sb decays directly to ¹³¹Te, while only 8.4 % of ¹³¹Sb decays first to ^{131m}Te.

Figure 3.19 (a, b, and c) shows the decay chains of ⁹⁵Zr, ⁹⁷Zr, and ¹⁰⁵Rh as ²³⁵U-fission products, while Table 3.11 compiles the nuclear characteristics and fission yields of the zirconium, niobium, and tellurium isotopes produced from fission reactions of ²³⁵U.

 237 Np ($T_{1/2} = 2.14 \times 10^6$ y) and 239 Np ($T_{1/2} = 2.355$ d) are obtained upon irradiating natural uranium targets, but they are not fission products. When the uranium target is bombarded in a nuclear reactor by fast neutrons, weighable amounts of 237 Np are formed by the nuclear reactions:


$$^{238}U(n, 2n)^{237}U \xrightarrow{\beta}^{237}Np$$


$$^{235}U(n,\gamma)^{236}U(n,\gamma)^{237}U \xrightarrow{6.75 \text{ d}}^{5^{\circ}} ^{237}\text{Np}$$

Thus, yield of ²³⁷Np obtained by neutron-irradiation of uranium targets depends on the ratio of the fast neutrons in the reactor; the yield increases by increasing this ratio. Also, at short irradiation times the amount of ²³⁷Np is low (Nesmeyanov, 1974). ²³⁹Np is the major activation product of ²³⁸U (Wu et al., 1995) and it is produced via the irradiation reaction:

$$^{238}U(n,\gamma)^{239}U \xrightarrow{\beta^{-}} ^{239}Np$$

Yield of 239 Np obtained by irradiation of, for example, 1 g of uranium for 24 h in a reactor with a flux of 10^{13} n.cm⁻².s⁻¹ is approximately 0.1 Ci (Nesmeyanov, 1974). Both of 237 Np and 239 Np have long decay chains, in which the isotopes decay mainly by emitting α and β particles. Some isotopes in these decay chains (e.g., 225 Ra, 225 Ac, 227 Th, and 231 Pa etc) have low-abundance and/or low-energy gamma rays of decay. There are also

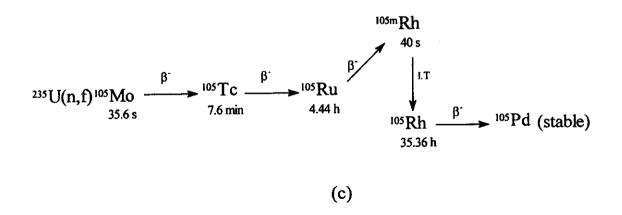


Figure 3.19. Decay chains of (a) ⁹⁵Zr, (b) ⁹⁷Zr, and (c) ¹⁰⁵Rh as ²³⁵U-fission products.

Table 3.11. Nuclear characteristics and fission yields of the ²³⁵U-fission zirconium, niobium, and tellurium isotopes.

Iso	tope	Half-life, $T_{I/2}$	Fission yield, Y_f	Decay mode	Main γ-energy (abundance), and other γ-energies in keV			
	⁹⁰ Zr	Stable	5.9 %		-			
be	91 Z r	Stable	5.9 %	•	-			
엹	⁹² Zr	Stable	6.1 %	-	-			
i.	⁹³ Zr	$1.53 \times 10^6 \text{ y}$	6.35 %	β	30.77 (8.9 × 10 ⁻⁴ %)			
Zirconium isotopes	94Zr	Stable	6.47 %		•			
E	95Zr			Table 3.10				
i i	⁹⁶ Zr	Stable	6.4 %	•	-			
2	⁹⁷ Zr			Table 3.1				
	^{93m} Nb	16.13 y	6.03 %	I.T	30.77 (6 ×10 ⁻⁴ %), 30.3,			
ا ی ا	⁹³ Nb	Stable	6.03 %	•	•			
Niobium isotopes	95mNb	3.61 d	0.0651 %	I.Τ, β ⁻	216.7 (48.59 %), 233, 235.7,			
iob	95Nb	Table 3.10						
Z .S	^{97m} Nb	Table 3.10						
	⁹⁷ Nb	Table 3.10						
	^{125m} Te	58 d	0.0077 %	<u> </u>	35.46 (6.7 %), 109.27, 104.3,			
	¹²⁵ Te	Stable	0.034 %					
	¹²⁶ Te	Stable	0.059 %	•	-			
	^{127m} Te	109 d	0.025 %	I.T, β	57.63 (0.3 %), 56.45, 87.25,			
1	¹²⁷ Te	9.4 h	0.156 %	β-	417.9 (0.9 %), 202.9, 360.3,			
pes	¹²⁸ Te	Stable	0.349 %		-			
<u>\$</u>	^{129m} Te	33.6 d	0.09 %	<u>Ι.Τ, β</u>	695.98 (4.9 %), 105.5, 729.62,			
iš.	¹²⁹ Te	1.16 h	0.511%	β	27.8 (17.6 %), 459.6,			
Į	¹³⁰ Te	$2.5 \times 10^{21} \text{ y}$	1.81 %	β-	•			
Ē	^{131m} Te	1.35 d	0. 412%	I.Τ, β ⁻	773.7 (38.6 %), 793.8, 852.3,			
Fellurium isotopes	¹³¹ Te	25 min 2.89 %		β.	149.8 (68.9 %), 452.4, 1147.4,			
-	¹³² Te			Table 3.1				
1	^{133m} Te	55.4 min	3.99 %	I.T, β	912.58 (62.8 %), 647.6, 863.91,			
	¹³³ Te	12.4 min	3.06 %	β	312.08 (72.6 %), 407.63, 1333.21,			
	¹³⁴ Te	41.8 min	6.97 %	β	767.2 (29.9 %), 210.47, 278,			
I	¹³⁵ Te	19 s	3.34 %	β ⁻	603 (100 %), 267, 870,			

isotopes in these decay chains which may undergo further nuclear reactions such as (n,f) reactions (e.g., ²³³U, ²³⁵U and ²³⁹Pu).

3.7. Production of radiocesium:

Figure 3.2 (a) indicates presence of the main γ-photopeak of ¹³⁷Cs, as its daughter ^{137m}Ba, (662.44 keV). There are 11 cesium isotopes produced from fission reactions of ²³⁵U; ¹³³Cs, ¹³⁵Cs, ¹³⁶Cs, ¹³⁷Cs, ¹³⁸Cs, ¹³⁹Cs, ¹⁴⁰Cs, ¹⁴¹Cs, ¹⁴²Cs, ¹⁴³Cs, and ¹⁴⁴Cs. Of these isotopes only ¹³³Cs is stable. The short-lived isotopes of ¹³⁸Cs ($T_{1/2} = 32.2 \text{ min}$), ¹³⁹Cs ($T_{1/2} = 9.3 \text{ min}$), ¹⁴⁰Cs ($T_{1/2} = 63.7 \text{ s}$), ¹⁴¹Cs ($T_{1/2} = 24.94 \text{ s}$), ¹⁴²Cs ($T_{1/2} = 1.68 \text{ s}$), ¹⁴³Cs ($T_{1/2} = 1.77 \text{ s}$), and ¹⁴⁴Cs ($T_{1/2} = 1.01 \text{ s}$) decayed completely during the seven-days cooling period. ¹³⁵Cs ($T_{1/2} = 2.3 \times 10^6 \text{ y}$), the daughter of ^{135m}Cs is a pure β-emitter and decays to stable ¹³⁵Ba. Cesium-136 ($T_{1/2} = 13.16 \text{ d}$) decays to stable ¹³⁶Ba while, ¹³⁷Cs ($T_{1/2} = 30.17 \text{ y}$) decays to ^{137m}Ba ($T_{1/2} = 2.55 \text{ min}$) which in turn decays to stable ¹³⁷Ba. In addition to the aforementioned fission-cesium isotopes, ¹³⁴Cs ($T_{1/2} = 2.06 \text{ y}$) is produced during neutron-irradiation of uranium targets via the following activation reaction (STUK, 2000):

¹³³Cs
$$(n,\gamma)$$
 ¹³⁴Cs $\frac{\beta^{-}}{2.06 \text{ y}}$ ¹³⁴Ba (stable)

Figure 3.20 (a and b) shows the decay chains of ¹³⁶Cs and ¹³⁷Cs as ²³⁵U-fission products, while Table 3.12 compiles the nuclear characteristics of ²³⁵U-fission cesium isotopes and activation ¹³⁴Cs. Nuclear fission reaction is the primary and major means of producing ¹³⁷Cs, which is not a naturally occurring radionuclide. In other words, the largest source of ¹³⁷Cs and, therefore, the largest potential for waste material is from nuclear reactors and the large inventory of ¹³⁷Cs stored in irradiated fuel. ¹³⁷Cs is

²³⁵U(n,f)¹³⁶Cs
$$\xrightarrow{\beta^{-}}$$
 ¹³⁶Ba (stable)
(a)

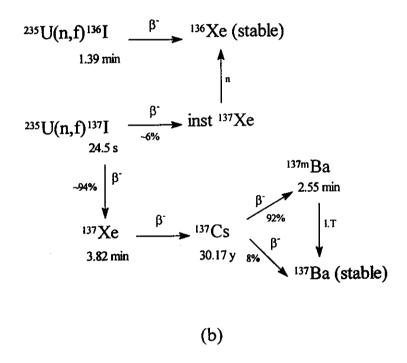


Figure 3.20. Decay chains of (a) ¹³⁶Cs and (b) ¹³⁷Cs as ²³⁵U-fission products.

Table 3.12. Nuclear characteristics of the ²³⁵U-fission cesium isotopes and ¹³⁴Cs.

Isotope	Half-life, t _{1/2}	Fission yield, Y_f	Decay mode	Main γ-energy (abundance), and other γ-energies in keV
¹³³ Cs	Stable	6.5 %	-	-
¹³⁴ Cs	2.065 y	Not a fission Product	β-, E.C	604.74 (98.1 %), 605.65, 795.8, 796.47,
¹³⁵ Cs	$2.3 \times 10^6 \text{ y}$	6.54 %	β-	•
136Cs	13.16 d	0.0062 %	β.	818.5 (99.7 %), 340.6, 1048,
¹³⁷ Cs	30.17 y	6.19 %	β-	661.64 (86 %), 624.2, 655.7,
¹³⁸ Cs	32.2 min	6.71 %	β	1435.86 (76.3 %), 462.79, 1009.78,
¹³⁹ Cs	9.3 min	6.35 %	β.	1283.2 (7.3 %), 627.3,
¹⁴⁰ Cs	63.7 s	5.72 %	β-	602.32 (55.6 %), 908.36, 1200.49,
141 Cs	24.94 s	4.17 %	β	48.48 (9.3 %), 555.74, 561.51,
¹⁴² Cs	1.68 s	2.72 %	β	1326.46 (12.92 %), 359.6, 966.9,
¹⁴³ Cs	1.77 s	1.45 %	β	232.42 (8.32 %),306.42, 660.06,
144Cs	1.01 s	0.423 %	β ⁻ , β ⁻ -n	199.33 (100 %), 559.57, 639,

produced in a high yield from fission reaction of 235 U ($Y_f = 6.19$ %). It emits high-energy beta particles (944 keV), and is characterized also by emission of the 661.64 keV-gamma rays (86 %). Because of this high gamma-ray energy, 137 Cs has been used to sterilize medical supplies and to irradiate food (Tingey et al., 1990). Another industrial applications of 137 Cs include (i) production of the plastic shrink tubing (irradiated plastic has the tendency to shrink after being heated), (ii) radiography to inspect metal castings and welds for flaws and material defects (e.g., cracks in steel pipes), (iii) sealed sources (containing known amounts of gamma radioactivity) for calibration (e.g., calibrating gamma-ray spectrometers and dose calibrators), and (iv) radioactive measurement gauges for liquid or solid thicknesses (e.g., gauging of automobile sheet steel) (DOE, 1998). Applications of cesium in nuclear medicine include PET imaging, tumor treatment, and measuring correct patient dosages of radiopharmaceuticals (Adelstein and Manning, 1995).

3.7.1. Separation technique:

In this technique, the radiocesium is retained by the nickel ferrocyanide [nickel hexacyanoferrate(II)] complex during precipitation of this complex from an alkaline media. After separation of the formed Fe₂O₃.nH₂O precipitate, the fission-products solution was transferred to another conical flask. A solution containing 30 mg sodium ferrocyanide was added to the fission-products solution dropwise with stirring to attain homogeneity. The solution was left to withstand for about 15 min. Then, a solution containing 26 mg nickel chloride was added to the fission-products solution, also, dropwise with stirring. Once more, the fission-products solution was left for about 15 min for withstanding after adding the nickel chloride solution. Final concentrations of sodium ferrocyanide and nickel chloride in the fission-products solution were 0.01 and 0.02 M,

respectively. pH-value of the solution was raised gradually and slowly, for the same reasons mentioned above with precipitation of Fe₂O₃.nH₂O, until it reached ~10 (Rahman et al., 1997) and left for one hour to settle completely the formed nickel ferrocyanide complex, Ni₂[Fe(CN)₆]. During its precipitation, nickel ferrocyanide complex, Ni₂[Fe(CN)₆], retained cesium from the solution (Lilga et al., 1998) according to the reaction:

2CsOH+ NiCl₂+Na₄[Fe(CN)₆]
$$\longrightarrow$$
 Cs₂Ni[Fe(CN)₆] + 2NaCl+ 2NaOH

After complete settling of the formed precipitate, the fission-products solution was withdrawn and centrifuged to ensure that it became free from any traces of the precipitated nickel ferrocyanide complex. Figure 3.21 (a and b) shows the gamma spectra of the fission-products solution before and after addition of sodium ferrocyanide solution and separation of the precipitated Ni₂[Fe(CN)₆] complex. The precipitated complex was transferred semi-quantitatively from the conical flask on a Whatman No. 1 filter paper and washed with a sodium sulfate solution of pH10. Finally, the precipitate was dissolved in dilute sulfuric acid. Comparing the gamma spectra obtained in (a) and (b) of Figure 3.21 indicates disappearance of ¹³⁴Cs and ¹³⁷Cs from the fission-products solution after precipitation of nickel ferrocyanide complex.

Generally, the use of hexayanoferrate (HCF) complexes for the recovery of cesium isotopes from fission-products solution is already well established in the nuclear industry. Much work has been devoted to investigate preparation methods and properties of HCF's of many bi, tri, and tetravalent metals. HCF's of the transition metals can be prepared in either the Fe(II) or Fe(III) form, i.e., HCF(II) or HCF(III), respectively (Jacobi and Streat, 1991). Hexacyanoferrates were selected for several

Figure 3.21. Gamma spectra of the fission-products solution (a) before addition of sodium ferrocyanide and (b) after addition of sodium ferrocyanide and nickel chloride and separation of the formed precipitate.

reasons; these are: (i) extreme selectivity for cesium in the presence of high sodium concentrations (ii) chemical and radiation stability, and (iii) simplicity and reproducibility of preparation using low-cost reagents (Prout et al., 1965; Loewenschuss, 1982; Lehto and Harjula, 1987; Tusa et al., 1994).

3.7.2. Quality control of the ¹³⁷Cs product:

3.7.2.1. Separation and recovery yields:

Figure 3.22 (a and b) shows the gamma spectra of the nickel ferrocyanide solution (in dilute H₂SO₄) with counting times of 500 and 5000 s. As shown in Figure 3.22 (b), the isotopes ¹³⁴Cs, ¹³⁶Cs and ¹³⁷Cs/^{137m}Ba appeared in the gamma spectrum of the nickel ferrocyanide solution. Table 3.13 compiles the radiometric analysis data of the ¹³⁴Cs. ¹³⁶Cs, and ¹³⁷Cs radionuclides in: (i) the fission-products solution before addition of the sodium ferrocyanide solution and after separation of the formed nickel ferrocyanide precipitate, and (ii) the nickel ferrocyanide solution (in dilute H₂SO₄). It was found that precipitation of the nickel ferrocyanide complex at pH-value of 10, with concentrations of 0.01 M sodium ferrocyanide (30 mg) and 0.02 M nickel chloride (26 mg), was sufficient to remove more than 99.99 % of ¹³⁷Cs from the fission-products solution, i.e., separation yield of 137 Cs $(S_{(Cs-137)})$ was > 99.99 %. The recovery yield of 137 Cs, i.e, production yield $(R_{(Cs-137)})$, as defined by Equation 2.6, was found to be 98.3 %. The fraction of separated ¹³⁷Cs which was not detected in the nickel ferrocyanide solution (< 1.69 %) might be lost during processes of washing and dissolution of the precipitated nickel ferrocyanide complex.

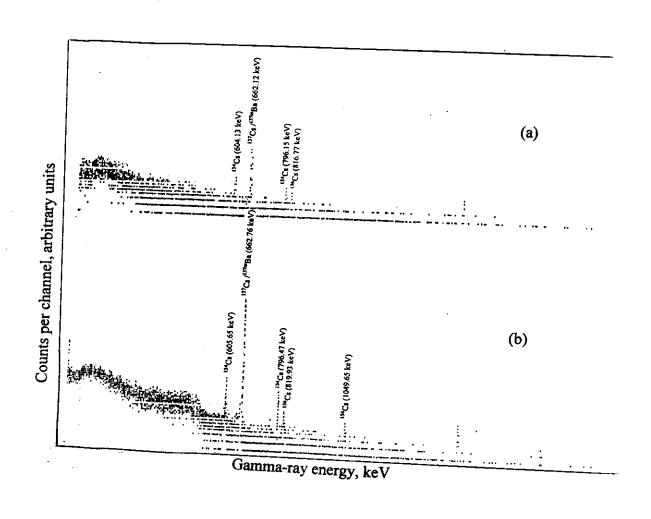


Figure 3.22. Gamma spectra of the nickel ferrocyanide solution (in dilute H₂SO₄) with counting times of (a) 500 s and (b) 5000 s.

Table 3.13. Radiometric analysis data for separation and recovery of ¹³⁷Cs.

	Isotope		¹³⁴ Cs	¹³⁶ Cs	¹³⁷ Cs	^{137m} Ba
þ	F.P solution	Before addition of sodium ferrocyanide	603.8	Not detected	stected 660,91	
the obtaine aks in keV		After separation of nickel ferrocyanide	Not detected	Not detected	Not detected Not detec	
CTRDs of the obtained	Nikel ferrocyanide solution	Counting time = 500 s	604.13, 796.15	816.77	662.12	
		Counting time=5000 s	605.65, 796.47	819.93, 1049.65	662.76	
ain I to the Ition)	F.P solution (countig time = 500s)	Before addition of sodium ferrocyanide	683	-	5457	
Net area under the main y-photopeak (normalized to the total volume of the solution)		After separation of nickel ferrocyanide	_	-	•	-
Net area u hotopeak (tal volume	Nikel ferrocyanide solution	Counting time =500s	981	0	5364	
y-ph tot		Counting time = 5000 s	9717	25	53104	

3.7.2.2. Radionuclidic purity:

According to the radiometric analysis data (Table 3.13), radionuclidic purity of the recovered 137 Cs, i.e., fraction of the total γ -radioactivity of the nickel ferrocyanide solution (in dilute H_2SO_4) which was contributed to 137 Cs/ 137m Ba, was 84.5 % at end of the separation process. Radionuclide contaminants of 15.46 % and 0.04 % of the total γ -radioactivity of the nickel ferrocyanide solution (in dilute H_2SO_4) were due to 134 Cs and 136 Cs, respectively. In spite of its low fission yield ($Y_f = 0.0062$ %), 136 Cs appeared in the gamma spectra shown in Figure 3.22 due to its high-abundance and high-energy gamma rays (99.7 % of 818.5 keV).

3.7.2.3. Radioactivity and specific activity:

Radioactivity of the recovered 137 Cs, $A_{(Cs-137)}$, was calculated according to:

$$A_{(Cs-137)} = R_{(Cs-137)alk} A_{0(Cs-137)}$$
 (3.4)

Where,

 $A_{0(Cs-137)}$ = radioactivity of ¹³⁷Cs obtained at end of irradiation, it was calculated by using Equation (1.3).

Since ¹³⁷Cs is a long-lived isotope ($T_{1/2} = 30.17$ y), the decrease in its radioactivity during nine days can be neglected, so that the term $e^{-\lambda_{f(x-137)}t}$ was not included in Equation (3.4). For weights of 0.02, 0.06, and 0.1 g of the irradiated UO₃ targets, calculated values of $A_{(Cs-137)}$ were found to be 4, 11, and 19 μ Ci, respectively.

Table 3.14. Quality control data of the ¹³⁷Cs product.

Separation yield, S _(Cs-137)		> 99.99 %	
Recovery yield, R _(Cs-137)		98.3 %	
Radionuclidic purity		84.5 %	
%	Other radionuclides	15.46 % ¹³⁴ Cs and 0.04 % ¹³⁶ Cs	
d , µCi	0.02 g of UO ₃	4	
Calculated radioactivity, µCi	0.06 g of UO₃	11	
radio	0.1 g of UO ₃	19	
I µCi/ml	0.02 g of UO ₃	1	
Calculated specific activity, μCi/ml	0.06 g of UO₃	2	
	0.1 g of UO₃	4	

Specific activity of 137 Cs (μ Ci/ml) could be calculated by dividing $A_{(Cs-137)}$ by volume of the solution containing the recovered 137 Cs (5 ml). Thus for weights of 0.02, 0.06, and 0.1 g of the irradiated UO₃ targets, calculated specific activities of the recovered 137 Cs were found to be 1, 2, and 4 μ Ci/ml, respectively. Table 3.14 compiles the quality control data of the 137 Cs product.

3.8. Production of radiomolybdenum:

Figure 3.1 (b) indicates presence of the γ-photopeaks of ⁹⁹Mo (140.1, 181.75, 366.33, 742.29, and 781.06 keV). There are eight ²³⁵U-fission molybdenum isotopes; ⁹⁵Mo, ⁹⁷Mo, ⁹⁸Mo, ⁹⁹Mo, ¹⁰⁰Mo, ¹⁰¹Mo, ¹⁰²Mo, and ¹⁰⁵Mo. Of these isotopes, ⁹⁵Mo, ⁹⁷Mo, ⁹⁸Mo, and ¹⁰⁰Mo are stable ones. The isotopes of ¹⁰¹Mo, ¹⁰²Mo, and ¹⁰⁵Mo are short-lived isotopes with half-life periods of 14.6 min, 11.3 min, and 35.6 s, respectively, so that they decayed completely during the seven-days cooling period. The latter three isotopes decay as follows:

- 1. ¹⁰¹Mo decays to ¹⁰¹Tc ($T_{L/2}$ = 14.2 min) which finally decays to stable ¹⁰¹Ru.
- 2. 102 Mo decays to 102m Tc ($T_{1/2} = 4.35$ min) which in turn decays to 102 Tc ($T_{1/2} = 5.28$ s), which finally decays to stable 102 Ru.
- 3. 105 Mo decays to 105 Tc ($T_{1/2} = 7.6$ min) which decays to 105 Ru which in turn decays to 105 Rh, which finally decays to stable 105 Pd (Figure 3.19, c).

The short-lived isotopes ¹⁰¹Tc, ¹⁰²mTc, ¹⁰²Tc, ¹⁰⁵Tc, ¹⁰⁵Ru, and ^{105m}Rh decayed completely during the seven-days cooling period. The stable isotopes of ¹⁰¹Ru, ¹⁰²Ru, and ¹⁰⁴Ru would be distilled off along with ¹⁰³Ru and ¹⁰⁶Ru (Section 3.4). Rhodium-105 was previously coprecipitated with Fe₂O₃.nH₂O (Section 3.6.2).

Molybdenum-99 ($T_{1/2} = 2.75$ d) is the most important fission-molybdenum isotope. The majority of ⁹⁹Mo (87.9 %) decays to ^{99m}Tc ($T_{1/2} = 6.01$ h) which in turn decays to ⁹⁹Tc ($T_{1/2} = 2.13 \times 10^5$ y) which finally decays to stable ⁹⁹Ru, whereas 21.1 % of ⁹⁹Mo decays directly to ⁹⁹Tc. Figure 3.23 shows the decay chain of ⁹⁹Mo as a ²³⁵U-fission product, while Table 3.15 compiles the nuclear characteristics and fission yields of the molybdenum and technetium isotopes produced from fission reactions of ²³⁵U.

Molybdenum-99 gained its importance from its daughter ^{99m}Tc which has many important applications in nuclear medicine, where its suitable half-life and gamma energy (87.2 % of 140.51 keV) and absence of beta radioactivity play an important role in diagnostic and therapeutic purposes. About 80 % of the diagnostic nuclear medicine procedures are performed using ^{99m}Tc labeled compounds (Nair et al., 1992), where they are used in both conventional γ-scanning and SPECT imaging, e.g., imaging patients with basal ganglia disease, SPECT imaging for lung cancer, cerebral SPECT imaging for Alzheimer's disease and multi-infarct dementia (Gemmell et al.,1988; Smith et al., 1988; Takekawa et al., 1999). The starting material for the ^{99m}Tc-labeled compounds is sodium pertechnetate which is produced from ⁹⁹Mo/^{99m}Tc generators which consist of chromatographic columns loaded with ⁹⁹Mo and from which ^{99m}Tc is eluted with a high degree of purity (Noronha et al., 1976; Boyd, 1987).

Molybdenum-99 can be produced either by 235 U (n,f), with a fission yield of 6.11 %, or 98 Mo (n, γ) reactions. In case of 98 Mo(n, γ) reactions, lower specific activities of 99 Mo are produced, which require larger chromatographic columns, and consequently lower concentrations of 99 mTc (in the pertechnetate form) eluates. On the other hand, 235 U(n,f) reaction produces higher specific activities of 99 Mo, which require smaller

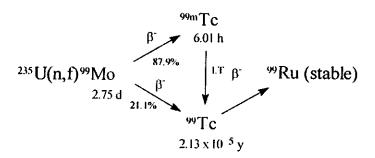


Figure 3.23. Decay chain of ⁹⁹Mo as a ²³⁵U-fission product.

Table 3.15. Nuclear characteristics and fission yields of the ²³⁵U-fission molybdenum and technetium isotopes.

Isotope		Half-life, T _{1/2}	Fission yield, Y_f	Decay mode	Main γ-energy (abundance), and other γ- energies in keV	
	⁹⁵ Mo	Stable	6.5 %	•	-	
Molybdenum isotopes	97Mo	Stable	6.2 %	-	•	
	98Mo	Stable	5.9 %	-	• • • • • • • • • • • • • • • • • • •	
	⁹⁹ Мо	2.75 d	6.11%	β	140.5 (89.43 %), 181.06, 366.42, 739.5, 777.92,	
	¹⁰⁰ Mo	Stable	6.29 %	-	-	
	Мо	14.6 min	5.17 %	β	191.98 (18.8 %), 590.87, 1012.5,	
	¹⁰² Mo	11.3 min	4.28 %	β-	211.66 (3.8 %), 148.19, 211.66,	
	¹⁰⁵ Mo	35.6 s	0.916%	β-	85.4 (25 %), 76.5, 147.8,	
	^{99m} Tc	6.01 h	5.37 %	l.Τ, β ⁻	140.51 (87.2 %)	
Technetium isotopes	⁹⁹ Tc	2.13 × 10 ⁵ y	6.11%	β-	89.65 (6 × 10 ⁻⁴ %)	
	^{fol} Tc	14.2 min	5.17 %	β	306.88 (88 %), 127.1, 545.11,	
	^{102m} Тс	4.35 min	4.29 %	I.T, β	475.06 (87.2 %), 628.05, 1615.3,	
	¹⁰² Tc	5.28 s	0.224 %	β.	475.02 (6.7 %), 468.9, 865.5,	
	¹⁰⁵ 7'c	7.6 min	0.964 %	β.	143.2 (11 %), 107.95, 321.5,	

chromatographic columns, and consequently produce higher concentrations of the pertechnetate eluates (Nair et al., 1992).

3.8.1. Recovery of ⁹⁹Mo:

The processing steps of: (i) digestion of the irradiated uranium targets, (ii) separation of radioiodine, (iii) separation of radioruthenium, (iv) batch separation of Sr, Ba, La, and Ce radionuclides, (v) batch separation of Zr, Nb, Te, and Np radionuclides, and (vi) separation of radiocesium are considered as decontamination steps to recover ⁹⁹Mo.

After adding H₂O₂ solution (Section 3.6.1) to the fission-products solution, any reduced molybdenum species were oxidized to Mo(VI) (El-Absy, 1991). The equilibrium of Mo(VI) species in aqueous solutions at different pH-values (Mitchell, 1990; Mitchell, 1999; Aveston et al., 1964) can be written as follows:

$$[MoO_4]^2 \xrightarrow{\text{pHS-6}} [Mo_7O_{24}]^{6-\text{pH3-5}} [Mo_8O_{26}]^4 \xrightarrow{\text{pHi.9}} MoO_3.2H_2O \downarrow \xrightarrow{\text{pH<0.9}} [MoO_2]^{2+\text{pH>0}}$$
normal molybdate heptamolybdate octamolybdate hydrated molybdenum molybdyl trioxide

According to the former equilibrium, the predominant species of Mo(VI) in the acidified fission-products solution was $[MoO_2]^{2+}$. During raising pH of the fission-products solution (Section 3.6.1), as pH value exceeded 6, $[MoO_4]^{2-}$ became the predominant species of Mo(VI) in the fission-products solution. Thus, In the final solution, after separation of radiocesium, $[MoO_4]^{2-}$ remained as the predominant species.

3.8.2. Quality control of the ⁹⁹Mo product:

3.8.2.1. Recovery yield:

Table 3.16 compiles the radiometric analysis data of ⁹⁹Mo and ^{99m}Tc in (i) the fission-products solution obtained directly after digestion of the

irradiated target and separation of the formed residue, and (ii) the final solution obtained after separation of the precipitated nickel ferrocyanide complex. According to data given in Table 3.16, it was found that recovery yield, i.e., production yield $(R_{(Mo-99)})$, of ⁹⁹Mo (Equation 2.7) was found to be 70.02 %.

Using the well-known equation (Ehmann and Vance, 1991):

$$A/A_{\theta} = e^{-\lambda t} \qquad (3.5)$$

where,

- A_0 = radioactivity of ⁹⁹Mo initially present directly after digestion of the irradiated target and separation of the formed uranium-bulk residue,
- A = radioactivity of ⁹⁹Mo that should have remained after precipitation and separation of the formed nickel ferrocyanide supposing that all the decrease in radioactivity of ⁹⁹Mo was only due to its decay,
 - $\lambda = \text{decay constant of }^{99}\text{Mo }(0.252 \text{ d}^{-1}), \text{ and }$
- t =time left from the moment at which radioactivity of 99 Mo = A_{θ} to that at which radioactivity of 99 Mo = A (t = 1.25 d),

it was found that 72.98 % of the initial ⁹⁹Mo radioactivity (present directly after digestion of the irradiated target and separation of the residue) should have been remained after separation of the nickel ferrocyanide precipitate, so that it can be easily deduced that 2.96 % of ⁹⁹Mo was lost during: (i) transferring the fission-products solution from one container to another, and (ii) the aforementioned three precipitation processes (sections 3.5, 3.6, and 3.7).

Table 3.16. Radiometric analysis data for recovery of ⁹⁹Mo.

	Isotope	⁹⁹ Mo	^{99m} Tc
e obtained ks in keV ution)	Directly after digestion and separation of the residue	140.87, 181.67, 365.61, 740.69, 778.4	140.87
CTRDs of the obtained	After separation of the nickel ferrocyanide precipitate	139.55, 179.85, 364.05, 734.84, 773.08	139.55
under the shotopeak solution the total volume olution)	Directly after digestion and separation of the residue	8322240	
Net area under the main y-photopeak in F.P solution (normalized to the total of the solution)	After separation of the nickel ferrocyanide precipitate		

3.8.2.2. Radionuclidic purity:

As shown in Figure 3.21 (b), after separation of the radiocesium, only 99 Mo and its daughter 99m Tc appeared in the gamma spectrum of the finally obtained solution and no other radionuclides were detected. Radionuclidic purity of the recovered 99 Mo, i.e., fraction of total γ -radioactivity of the finally obtained solution (after separation of the precipitated nickel ferrocyanide complex) which was contributed to 99 Mo/ 99m Tc, was found to be > 99.9 %.

3.8.2.3. pH-value of the product solution:

pH-value of the final solution obtained after separation of the precipitated nickel ferrocyanide complex was found to be 10.

3.8.2.4. Radioactivity and specific activity:

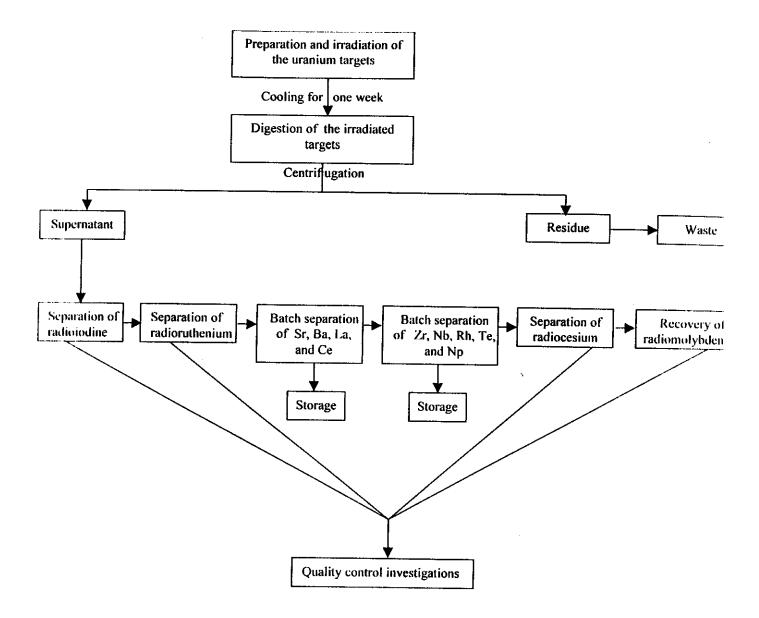
Radioactivity of the recovered 99 Mo, $A_{(Mo-99)}$, was calculated according to:

$$A_{(Mo-99)} = R_{(Mo-99)} A_{0(Mo-99)}$$
 (3.6)

Where,

 $A_{0(Mo-99)}$ = radioactivity of ⁹⁹Mo obtained at end of irradiation, it was calculated by using Equation (1.3).

For weights of 0.02, 0.06, and 0.1 g of the irradiated UO₃ targets, calculated values of $A_{(Mo-99)}$ were found to be 1368, 4104, and 6841 μ Ci, respectively.


Specific activity of 99 Mo (μ Ci/ml) could be calculated by dividing $A_{(Mo-99)}$ by volume of the final solution containing the recovered 99 Mo (10 ml). Thus for weights of 0.02, 0.06, and 0.1 g of the irradiated UO₃ targets, calculated specific activities of the recovered 99 Mo were found to

be 137, 410, and 684 μ Ci/ml, respectively. Table 3.17 compiles the quality control data of the 99 Mo product.

Figure 3.24 illustrates flow-chart of the production process of ¹³¹I, ¹⁰³Ru, ¹³⁷Cs, and ⁹⁹Mo from ²³⁵U-fission reaction including batch separation of two groups of elements; (i) Sr, Ba, La, and Ce, and (ii) Zr, Nb, Rh, Te, and Np.

Table 3.17. Quality control data of the ⁹⁹Mo product.

Recovery yield, $R_{(A.l99)}$ Radionuclidic purity		70.02 % > 99.9 %	
d µCi	0.02 g of UO ₃	1368	
Calculated radioactivity, μCi	0.06 g of UO ₃	4104	
C radic	0.1 g of UO ₃	6841	
1 μCi/ml	0.02 g of UO ₃	137	
Calculated specific activity, μCi/ml	0.06 g of UO ₃	410	
	0.1 g of UO ₃	684	

Figure 3.24. Sequential separation flow-chart of the ²³⁵U-fission products: ¹³¹I, ¹⁰³Ru, ¹³⁷Cs, and ⁹⁹Mo radionuclides.