EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS <u>CHAPTER (I)</u>

EFFECT OF INSECTICIDES ON

SOIL BACTERIA

In this experiment, the number of total bacteria, azotobacters and denitirifying bacteria were counted in both glucose amended or unamended soil. To the soil samples, either the recommended field dose or 10-fold the field dose of one the following insecticides: Sevin (Carbaryl) ,Larvin (Thiodicarb) and Lannate (Methomyl) over a period of 45 days was added.

(a) Total Bacteria:

The results in Table (2) and Fig (1) show a significant increase during the first five days followed by a decrease in the total bacterial counts in both the insecticide treated and untreated and in glucose amended and unamended soils. The presence of glucose in soil resulted in a significant increase in the total bacterial count. However, the highest bacterial count was recorded after 5 days of incubation in all experimental treatments. Also, the results reveal that, the bacterial counts in insecticides treated soils were higher compared with the control only in glucose amended soil. On the other hand, the total counts were higher in soil samples amended with 10-fold of the recommended dose. The stimulation effect is clear in soil treated with Lannate followed by Sevin and finally by Larvin. However, the population increased several times using the tested doses of the experimental insecticides

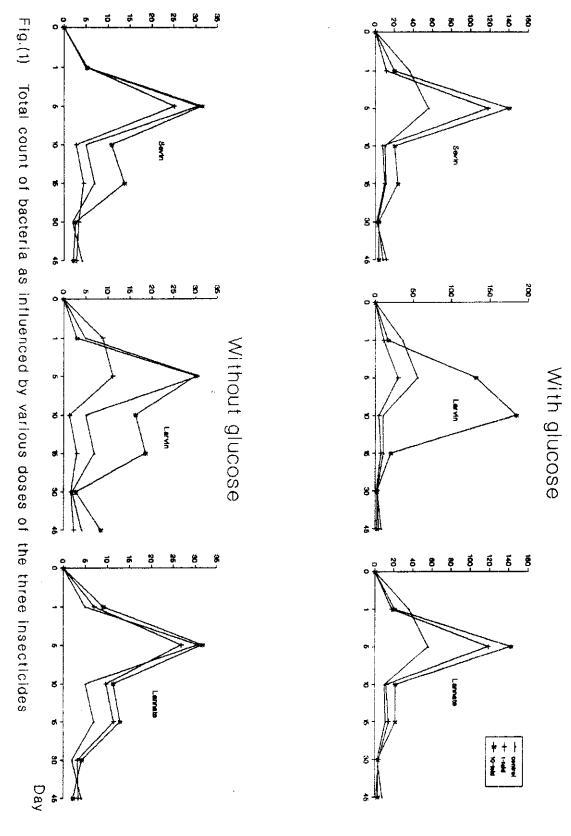

Experimental Results

Table (2) Total counts of bacteria as influenced by various doses of the three insecticides in soil amended or non-amended with glucose

					counts	counts /g. dry soil (X 1	/ soil ((x 10 ⁶)						
Time	Soil	.1		Doses c	of Sevin	1		Doses	of Larvin	vin		Doses of Lannate	Lannat	(D)
days	without G	with G				10				0		1		10
			_	1+G	10	10+G		1+G	10	10+G	-	1+G	10	10+G
	49.30	357.00	52.96	113.45	51.60	196.90	87.81	110.76	30.01	169.45	70.30	178.25	98.51	207.95
Ŋ	307.40	558.45	252.45	1184.05	314.50	1399.95	111.35	297.50	300.05	1320.05	267.55	1189.05	317.15	1421.55
10	49.65	103.45	27.80	76.25	107.95	202.90	13.37	50.41	162.95	183.60	96.90	117.05	112.69	217.35
- 5	68.85	109.40	43.95	96.31	136.85	234.86	30.01	73.10	185.65	205.96	113.90	145.10	129.16	215.65
30	19.55	25.76	23.56	12.55	26.35	37.40	17.14	14.45	28.31	20.82	32.30	40.80	41.65	30.86
45	41.06	78.20	28.65	113.90	20.68	33.15	22.78	50.41	84.41	23.63	33.75	15.56	22.04	31.45
G = Glucose	ose													

The results were statisitically analysed using "F" test.

Count /g. dry soil (X 10)

(b) Azotobacters:

The results presented in Table (3) and Fig. (2) show that the counts of azotobacter were increased by time of treatment until reached its maximum on the 5th day using all doses of the used insecticides (1,10) in both amended and namended soil with slightly increase in amended soil, and then decreased. The results reveal also that stimulatory or inhibitory effects of the experimental insecticides on the total count of azotobacter differed according to type of the insecticide; its dose, the supplementation of glucose and the time of treatment. Also, the results indicate that by using Sevin and Lannate (10-fold of the recommended dose) in the amended soil, the azotobacter counts were increased 3-and 4-fold respectively, after 5 days of treatment.

							cou	ınts /g.	dry sc	counts /g. dry soil (X 10 ³)	03)			
Time	Soil	ш		Doses of Sevin	f Sevin			Doses of	of Larvin		Doses		of Lannate	
ın days	without	with	70.00			10	-1			10	1		10	
	٠ G	ດ		1+G	10	10+G	1	1+G	10	10+G	1	1+G	10	10+G
	61.20	119.00	50.15	110.50	68.85	102.00	20.40	41.65	61.20	68.85	80.75	119.00	93.50	153.00
رن د	476.00	501.50	153.00	493.00	212.50	714.00	67.15	119.00	93.50	127.50	127.50 170.00 714.00 238.00	714.00	238.00	935.00
10	17.85	20.40	14.45	19.55	34.00	110.50	5.78	34.00	11.90	20.40	17.85	38.25	32.30	39.95
15	11.90	68.85	5.19	34.00	14.45	34.00	7.91	11.90	9.35	14.45	17.00	29.75	18.70	20.85
30	12.30	28.05	11.05	12.55	34.00	44.20	8.08	12.75	11.90	14.45	14.45	22.95	16.15	21.25
45	1.70	14.45	1.53	113.90	1.53	22.25	6.29	33.15	1.70	28.05	28.05	14.45	7.91	34.00

G = Glucose

The results were statisitically analysed using "F" test.

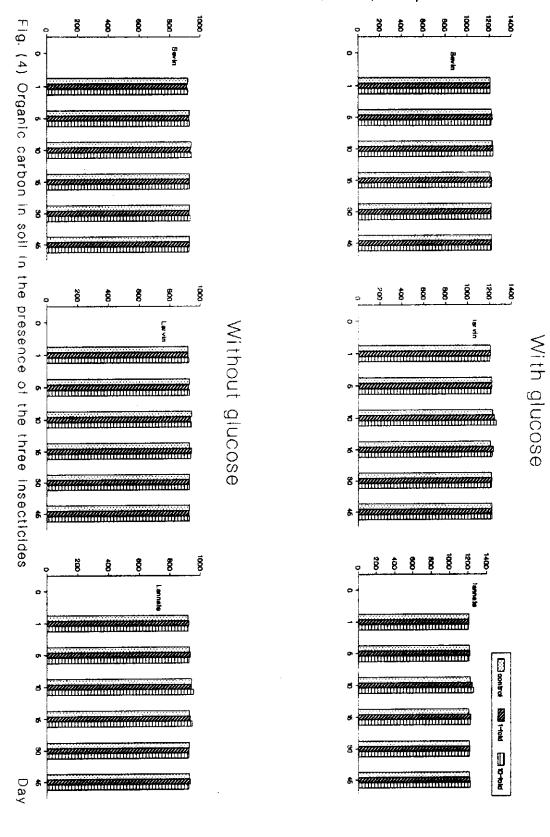
CHAPTER (II)

EFFECT OF INSECTICIDES ON SOME SOIL PORPERTIES

To study the effect of carbamate insecticides (Sevin, Larvin & Lannate) on the chemical properties of soil inoculated with microbs, glucose ammended and unamended soil samples, and treated and untreated with different doses of the tested insecticides were chemically analyzed at different time intervals during the experimental period (45 day), as previously described in material and methods.

1- Organic Carbon:

The data presented in Table (5) and Fig (4) show that no significant effect of all insecticides used at different doses along the experimental conditions used, on organic carbon contents of soil compared to control. This is because no considerable difference between the organic carbon contents of control and those of insecticide treated soils.


Table (5) Determination of organic carbon in soil in the presence of Sevin, Larvin and Lannate

1 210	30 0.930 1.215 0.927	15 0.930 1.209 0.930	10 0.942 1.227 0.936	5 0.930 1.218 0.927	1 0.918 1.209 0.912	-	out wi	Time Soil	
0 1.218	7 1.215	0 1.224	5 1.233	1.227	1.209	1+G		Doses c	Organic
0.927	0.933	0.930	0.945	0.930	0.918	10		of Sevin	c carbo
1.221	1.215	1.221	1.236	1.215	1.209	10+G	0		n oxida
0.924	0.930	0.942	0.933	0.921	0.918			ם	carbon oxidation g/100 g
1.221	1.218	1.230	1.230	1.224	1.209	1+G		Doses of	i 11
0.930	0.930	0.936	0.942	0.930	0.924	10		f Larvin	dry soil
1.221	1.212	1.230	1.233	1.213	1.203	10+G	10		
0.933	0.927	0.933	0.939	0.933	0.924			Doses	
1.221	1.221	1.233	1.245	1.221	1.209	1+G		es of L	
0.924	0.924	0.948	1.245 0.954	0.927	0.918	10	10	of Lannate	
1.224	1.215	1.224	1.259	1.212	1.203	10+G			

G = Glucose

The results were statisitically analysed using "F" test.

Organic carbon g/100g. dry soil (X 10)

2- Calcium Carbonate:

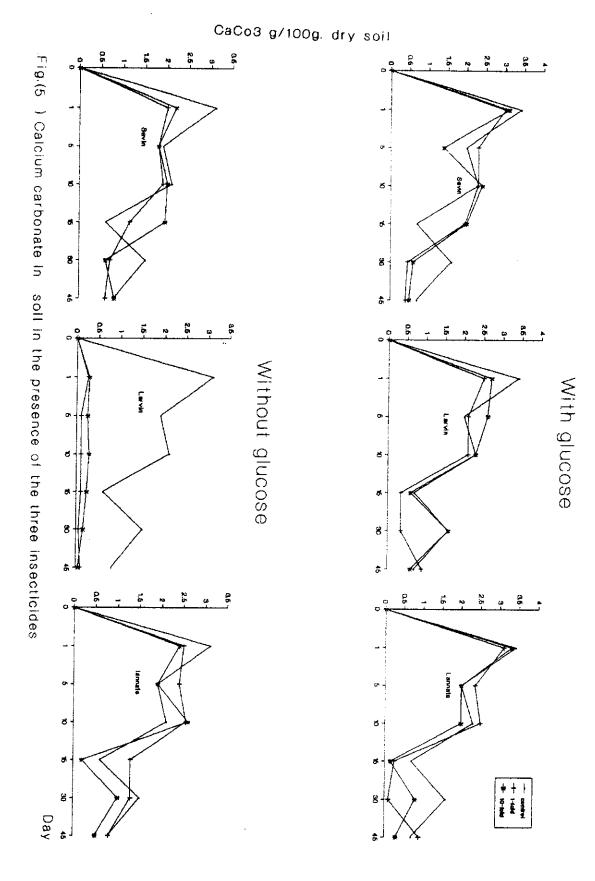

As illustrated in Table (6) and Fig (5) the calcium carbonate contents, in control samples as well as in the amended insecticide-treated soil samples inoculated with microbs, recorded the highest values after the shortest incubation period (one day). But in unamended insecticide treated soil samples, the highest values of calcium carbonate were recorded after 10 days of incubation. In general, the decrease of calcium carbonate contents after incubation time more than one day in control and amended insecticide treated soil samples and after more 10 days in glucose unamended insecticide treated soil samples, may be due to the consumption of calcium carbonate by the organisms inoculated in thess samples. In general, an irregular effect of carbamate insecticides (Sevin, Larvin & Lannate) varying from decrease to increase was noticed along the experimental period compared to control.

Table (6) Determination of Calcium carbonate in soil in the presence of Sevin, Larvin and Lannate

				Organi	c carbo	n oxida	Organic carbon oxidation g/100 g dry soil	100 g d	lry soil					
Time	Soil	1		Doses c	of Sevin		ם	oses of	Doses of Larvin		Dos	Doses of Lannate	annate	
days	without	with				10				10			10	
	G	G		1+G	10	10+G	1	1+G	10	10+G		1+G	10	10+G
	3.10	3.20	2.00	3.00	2.20	3.10	0.26	2.50	0.29	2.70	2.50	3.10	2.40	3.30
σ	1.90	2.00	1.80	2.30	1.80	1,40	0.10	2.10	0.25	2.60	2.40	2.35	1.90	2.00
10	2.10	2.30	2.90	2.30	2.00	2.40	0.10	2.10	0.28	2.30	2.55	2.50	2.60	2.00
15	0.60	0.70	1.15	1.95	1.95	2.00	0.10	0.35	0.23	0.60	1.30	0.25	0.20	0.15
30	1.50	1.60	0.70	0.45	0.60	0.60	0.06	0.35	0.16	1.60	1.30	0.10	1.00	0.80
45	0.80	0.70	0.60	0.40	0.80	0.50	0.10	0.90	0.05	0.60	0.80	0.90	0.50	0.30

G = Glucose

The results were statisitically analysed using "F" test.

3- Carbonate Contents:

From the data presented in Table (7) and Fig (6), it can be noticed that after the first time interval (one day) highest values of carbonate contents were recorded in both control and insecticide treated as well as glucose amended and unamended soils. After incubation time more than one day and by using the all doses (the recommended dose & 10-fold) of tested insecticides (Sevin, Larvin & Lannate), the carbonate contents were decreased in both glucose amended and unamended soils. This may indicate that the carbonate contents could be utilized by the microorganisms in soil. Also, the results show that the insecticides (Sevin, Larvin & Lannate) had no significant effect on the carbonate contents and the highest values were found in glucose amended soils,

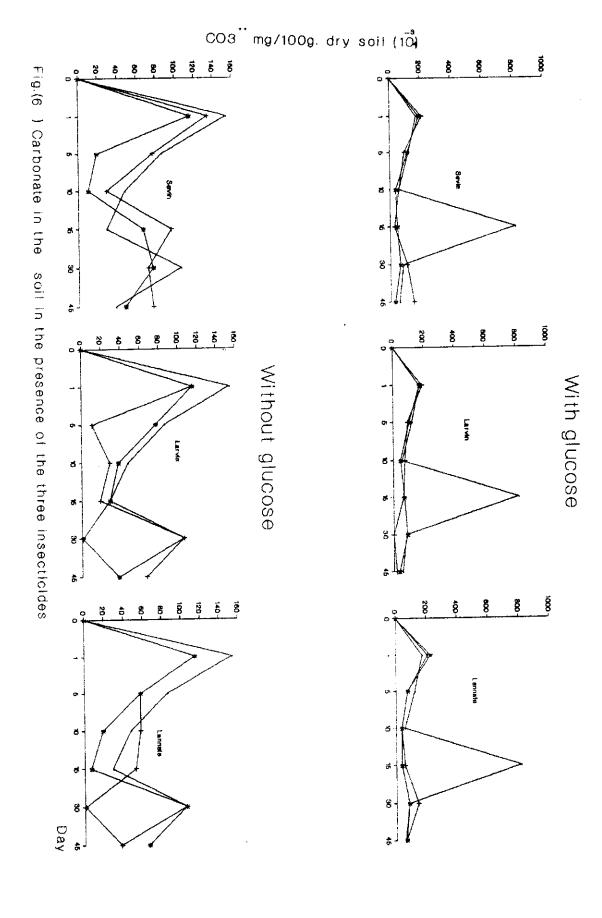

-- 04-

Table (7) Determination of carbonate in soil in the presence of Sevin, Larvin and Lannate

						CO3 ⁺⁺ mg	mg/100 g dry soil	dry soi	1				The state of the s	
Time	Soil	1	1	Doses of Sevin	Sevin		1	Doses of Larvin	Larvin		Doses		of Lannate	
- O	without	with			1	0	3			10			10	
	ď	ď	_	1+G	10	10+G	1	1+G	10	10+G		1+G	10	10+G
_	0.0154	0.0173	0.0134	0.0211	0.0115	0.0215	0.0115	0.0192	0.0115	0.0173	0.0115	0.0112	0.0173 0.0115 0.0112 0.0115 0.0230	0.0230
ഗ	0.0086	0.0125 0.0077	0.0077	0.0096	0.0019	0.0115	0.0011	0.0096	0.0077	0.0106	0.0085	0.0077	0.0106 0.0085 0.0077 0.0058 0.0077	0.0077
10	0.0048	0.0058	0.0029	0.0058	0.0010	0.0038	0.0029	0.0077	0.0038	0.0048	0.0048 0.0085	0.0038	0.0038 0.0019 0.0038	0.0038
15	0.0029	0.0816 0.0096	0.0096	0.0029	0.0567	0.0048	0.0019	0.0067	0.0029	0.0072	0.0053	0.0058	0.0029 0.0072 0.0053 0.0058 0.0007 0.0538	0.0538
30	0.0196	0.0086	0.0072	0.0110	0.0077	0.0067	0.0106	0.0001	0.0001	0.0091	0.0001	0.0144	0.0001 0.0144 0.0106 0.0086	0.0086
45	0.0038	0.0058	0.0077 0.0154	0.0154	0.0048	0.0029	0.0067 0.	0019	0.0038	0.0038	0.0038	0.0067	0.0038 0.0038 0.0038 0.0067 0.0067 0.0067	0.0067
G = Glucose	OSP.													

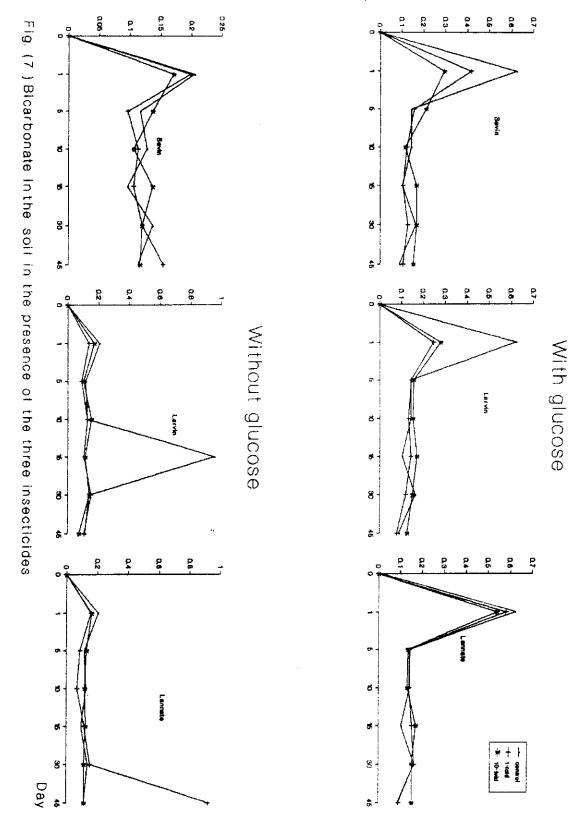
f = Glucose

The results were statisitically analysed using "F" test.

4- Bicarbonate Contents:

As shown in Table (8) and Fig (7), regardless of presence or absence of insecticides, the bicarbonate contents were only high in glucose amended soil compared to those unamended soil. As in carbonate contents experiment, also the bicarbonate contents recorded the highest values after the shorter incubation time interval (one day) and then decrease along the experimental period in glucose amended and unamendod and insecticide treated and untreated soils. By using Sevin (the recommended dose and 10-fold) lower levels of bicarbonate contents were recorded compared to those produced in the presence of Larvin and Lannate the recommended dose and 10-fold), only in glucose amended soil.

Table (8) Determination of bicarbonate in soil in the presence of Sevin, Larvin and Lannate


					Ŧ	HCO3 mc	mg/100 g dry	dry soil	Ľ					
Time	Soil	1		Doses of Sevin	Sevin	.,		Doses of	of Larvin		Dos	Doses of Lannate	annate	
days	wit	with			-	10				10	1		10	
	G	G		1+G	10	10+G	1	1+G	10	10+G	1	1+G	10	10+G
	0:2050	0.6223	0.1981	0.4174 0.1708		0.2944	0.2944 0.1366	0.2460	0.1708	0.2801	0.1571	0.5813 0.1640	0.1640	0.5403
υı	0.1161	0.1435	0.0956	0.1571 0.1366		0.2118	0.2118 0.0888	0.1435	0.1025	0.1574	0.0888	0.1435 0.1298		0.1366
10	0.1273	0.1435	0.1128	0.1230	0.1059	0.1161	0.1264	0.1332	0.1537	0.1537	0.0683	0.0683 0.1401 0.1196	0.1196	0.1332
15	0.0956	0.1025	0.1059	0.1059	0.1366	0.1674	0.1366 0.1674 0.1059	0.1435	0.1127	0.1127 0.1708	0.1161	0.1537	0.1161 0.1537 0.1230 0.1708	0.1
30	0.1366	0.1640	0.1196	0.1264	0.1196	0.1674	0.1674 0.1303	0.1197	0.1401	0.1503	0.1537	0.1640	0.1503 0.1537 0.1640 0.1127 0.1537	0.1
45	0.1127	0.0888 0.1537	0.1537	0.1059	0.1161	0.1537	0.1537 0.1093	0.0786	0.0752 0.1264	0.1264	0.0922	0.0922	0.0922 0.1127 0.1537	0.1

-57-

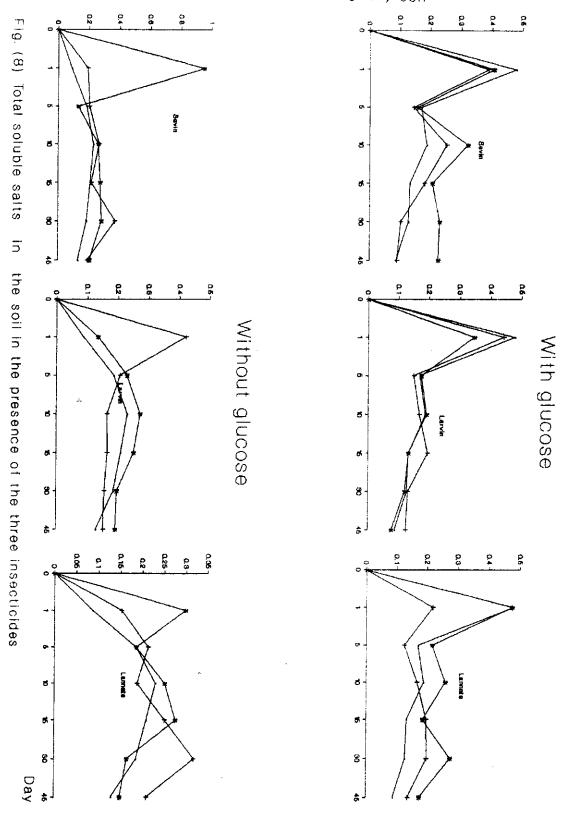
G = Glucose

The results were statisitically analysed using "F" test.

H CO3 mg/100g, dry soil

5- The Effect on Total Soluble Salts

The effect of carbamate insecticides (Sevin, Larvin & Lannate) on the content of soluble salts of the inoculated soil, was also investigated. It is noticed form Table (9) and Fig. (8) that only in glucose amended control samples as well as glucose amended insecticide treated soil samples, the contents of soluble salts were recorded the highest values after one day of incubation and then decrease along the experimental period. No clear relationship between the used dose and the evaluated contents of soluble salts of the inoculated soil samples. Generally, under the experimental conditions tested (different incubation periods and various doses of (Sevin, Larvin & Lannate), an irregular influence was showen.


Table (9) Determination of total soluble salts in soil in the presence of Sevin, Larvin and Lannate

				T	Total soluble	luble s	salts g/100		g dry soil					
Time	Soil	1	1	Doses of	Sevin		٥	Doses of	Larvin		Doses	es of L	of Lannate	
days	without	with				10				10			10	
	G	G		1+G	10	10+G	1	1+G	10	10+G		1+G	10	10+G
	0.0864	0.4776	0.1912	0.3888	0.0952	0.4062	0.4216	0.4416	0.1336 0.3456	0.3456	0.1528 0.2176	0.2176	0.2984	0.4744
υı	0.1856	0.1696	0.2032	0.1448	0.1296	0,1576	0.2056 0.5404	0.5404	0.2288	0.1744	0.2128	0.1744 0.2128 0.1240 0.1856		0.2452
10	0.2296	0.1880	0.2664	0.2536	0.2608	0.3216	0.3216 0.1640 0.63	0.6388	0.7712	0.1912	0.1872	0.7712 0.1912 0.1872 0.1672 0.2504		0.2584
15	0.2088	0.1328	0.2160	0.1808	0.2744	0.2064	0.2064 0.1656	0.1952	0.2504	0.2504 0.1326 0.2512 0.1960	0.2512	0.1960	02752 0.1856	0.1856
30	0.1852	0.1280	0.3712	0.1024	0.2808	0.2304	0.2304 0.1568	0.1320	0.1976	0.1208	0.3176	0.1976 0.1208 0.3176 0.1988 0.1648		0.2744
45	0.1288	0.0888	0.1928	0.0912 0.2056		0.2264	0.2264 0.1528 0.12	0.1248	0.1912	0.0776	0.2096	0.1388	0.1912 0.0776 0.2096 0.1388 0.1488 0.1757	0.1757
こしいこの														

G = Glucose

The results were statisitically analysed using "F" test.

Total soluble salts g/100g. dry soil

CHAPTER (III)

ISOLATION AND CHARACTERIZATION OF THE TEST BACTERIA

A- Isolation and Identification:

a) Isolation

The target of the present experiment was to isolate and identify certain bacterial species from fertile clay loam soil free from pesticides. The soil samples were collected from different localites from 0-30 cm depth, transferred to the laboratory then dried and ground. After sieving throug 2.0 mm sieve, the soil samples were distributed in plastic pots in 200g quantities and then amended with glucose and treated with the insecticides and the experiment was conducted as previously mentioned in material and methods.

The bacterial colonies appears on the nitrogen free plates were subcultured several times to purify desired bacteria from other contaminants. To make sure that these organisms are completely pure, they were plated on nutrient agar plates. The poor growth or the complete inhibition of growth indicated that these bacteria were completely pure. Using this method 41 different pure isolates were obtained and listed in Table (10 a & b).

b) The principal characteristics of the isolated strains:

The bacteria isolated in the previous experiment (41 pure organisms) were denoted as free-living aerobic nitrogen fixers as then grow on specifically on nitrogen-free (Ashbey's medium) the morphological and physiological characteristics are shown Table (10 a & b). Two bacterial strains numbered 4 and 15 were selected for urther studies in the current work. The selected strains exhibited the highest values rowth

Experimental Results

rable (10.a) The description of the locality isolated nitrogen fixing organisms

			10001				1 5	11011	COLIVEY	Nound	
Orange-beige	ŀ	Smoot h	Waterv	rj 	+	+	サインコの	5 ; + ; - ;	Control	D 10	
Pale-brown	ı	Smooth	Watery	Echinu.	+	+	Trans.	Entire	Convex	Round	
Beige-brown	ı	Smooth	Viscid	Spreed.	+	+	Trans.	Entire	Convex	Round	
Beige	ı	Smooth	\sim	Spreed.	+	+	Trans.	Entire	Convex	Round	
Yellow-beige	ł	Rough		Echinu.	+	+	e Trans.	Undulat	Raised	Irregular	
Beige-brown	ì	Smooth	_	Spreed.	+	+	Trans.	Entire	Convex	Round	
Red-brown	ļ	Smooth	Watery	Fili.	+	+	Trans.	Entire	Convex	Round	
Deep-brown	l	Smooth	Viscid	Ιď	+	+	e Trans.	lat	Flat	Round	
Beige	1	Rough	Viscid	Echinu.	+	+	Opaque	Entire	Flat	Irregular	24
Brown	I	Smooth	Watery	Fili.	+	+	Trans.	Entire	Convex	Round	
Pale-beige	l	Smooth	Watery	Fili.	+	+	Trans.	Entire	Convex	Round	
Orange-brown	ı	Smooth	Watery	Spreed.	+	+	Trans.	Entire	Convex	Round	
Brown	l	Rough	Membr.	Echinu.	+	+	e Opaque	Undulate	Convex	Irregular	
Beige	l	Smooth	Viscid	Spreed.	+	+	Trans.	Entire	Convex	Round	19
Brown	1	Smooth	Viscid	Fili.	+	+	Trans.	Entire	Flat	ounc	18
Red-beige	l	Rough	Viscid	Echinu.	+	+	e Trans.	at	Raised	Irregular	17
Beige-brown	I	Rough	Membr.	Echinu.	+	+	Opaque	Ή	Flat	ρ	16
Orange-brown	I	Rough	Viscid	Echinu.	+	+	Opaque	Entire	Raised	Irregular	15
Brown	1	Smooth	Viscid	Spreed.	+	+	Opaque	- ئـــا	Raised	Round	14
Brown	1	Smooth	Viscid	Fili.	+	+	Opaque	Entire	Raised	Round	. 1 ω
Brown-orange	1	Rough	Viscid	Echinu.	+	+	Opaque	Erose	Flat	Round	12
Beige	I	Smooth	Watery	Fili.	+	+	Opaque	Entire	Convex	Round	11
Red-beige	I	Smooth	Watery	Beaded	+	+	Trans.	Entire	Convex	Round	10
Pale brown	1	Smooth	Viscid	Spreed.	+	+	Opaque	Entire	Convex	Spindle	9
w	l	Rough	Viscid	Spreed.	+	+	Opaque	Entire	Convex	Round	&
Beige	I	Rough	Membr.	Beaded	+	+	Opaque	Entire	Flat	Round	7
Beige	1	Rough	Viscid	Echinu.	+	+		Undulate	Raised	Irregular	თ
Beige-brown	ı	Smooth	Viscid	Fili.	+	+	Opaque	Entire	Raised	Round	
Beige	ı	Rough	Viscid	Spreed.	+	+	Opaque	Entire	Flat	Round	4
Pale brown	t	Rough	Membr.	Spreed.	+	+	Opaque	Entire	Raised	Round	ω
സ	1	Smooth	Membr.	Spreed.	+	+	Trans.	Entire	Flat	Round	2
Pale brown	1	Smooth	Watery	Fili.	+	+	Trans.	Entire	Convex	Round	_
insoluble	sol.			streak	starch						ţ
		Surface	Consistency	on	on		Feature			cell	ani
igments	Ρi)		Form	Growth	Motility	Optcal	Margin	Elevation	Shape of	No. of
			المستويد ميسوا								

Table (10.b)

						lte	Filiform Echinula	<pre>Fili. = Filiform Echinu.= Echinulate</pre>	cr	Trans. = Translucent Spreed.= Spreeding	Trans. = Spreed.=
perge_red	-	SMOOLU	Watery	F'111.	+	+	Trans.	Entire	Convex	Round	41
Beige-brown	l	Smooth	Watery	Spreed.	+	+	Trans.	Entire	Convex	Round	40
Beige-red	ı	Smooth	Watery	Echinu.	+	+	Trans.	Entire	Convex	Round	39
ветде	ł	Smooth	Watery	Fili.	+	+	Trans.	Entire	Convex	Round	38
Beige-brown	١	Smooth	Watery	Fil:	+	+	Trans.	Entire	Convex	Spindle	37
ветде	ı	Smooth	Watery	Fili.	+	+	Trans.	Entire	Raised	Round	36
Berge-brown	ı	Smooth	Watery	Spreed.	+	+	Trans.	Entire	Convex	Round	35 35
Deep-beige	1	Smooth	Watery	Fili.	+	+	Trans.	Entire	Convex	Round	34
Red-brown	ı	Rough	Viscid	Echinu.	+	+	Opaque	Undulate Opaque	Raised	Irregular	33
							J				

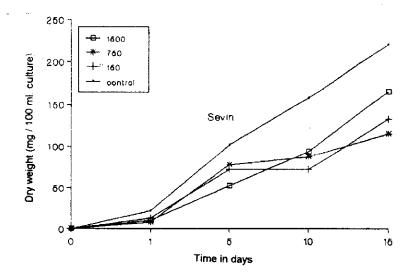
and nitrogen fixing capacity. Strains 4 & 15 were found to form non-diffusible to grown pigment, motile and were able to utilize starch as the carbon source. These characters are applied to the species Az chroococcum.

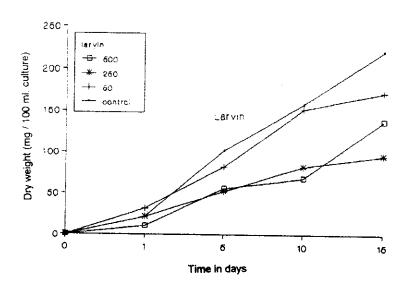
CHAPTER (V)

EFFECT OF SOME INSECTICIDES ON THE BIOLOGICAL ACTIVITY OF

AZOTOBACTER

The Effect on Growth


The effect of the insecticides (Sevin, Larvin & Lannate) on the growth of the two isolates (4,15) of Azotobacter chroococcum strains was studied.


(I) Isolate No. 4:

The results presented in Table (11) and Fig (9) show that the bacterial growth (expressed as dry weight) of the isolate No.4 which was (refferred to Az. chroococcum. A₄) clearly affected by the presence of carbamate insecticides (Sevin, Larvin & Lannate) in the culture medium used. In control cultures, the rate of growth increased with time along the experimental period (15 days). On the other hand, both Sevin and Larvin at the different three doses had negative effect on Az.chroococcum No.4 growth at the all time intervals investigated, compared to control. But the highest growth was recorded after one day incubation time in the presence of Lannate (150 ug/100 ml) culture, while high growth was obtained at dose of (300 ug/100 ml) culture after incubation time of 15 days. At doses other than the previous two doses and at the other incubation time intervals tested, the insecticide lannate had a negative effect on Azotobacter chroococcum A₄ growth.

Table (11) Effect of carbamate insecticides on the dry weight of Az chroococcum A_4

Time				Dry w	veight	(mg/10	00 ml c	ulture	e)	
in		Sevi	n (ug)		La	rvin (ug)	Lar	nate ((ug)
days	Con.	150	750	1500	50	250	500	30	150	300
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	22.0	13.0	8.0	10.0	32.0	22.0	11.0	20.0	33.0	11.0
5	102.0	72.0	78.0	52.0	82.0	52.0	56.0	92.0	103.0	50.0
10	158.0	72.0	88.0	94.0	152.0	82.0	68.0	74.0	88.0	94.0
15	221.0	133.0	115.0	166.0	172.0	96.0	138.0	117.0	113.0	277.0

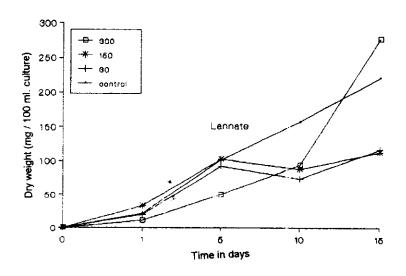


Fig (9) Effect of carbamate insecticides on the dry weight of Az.chroococcum A4

(II) Isolate No. 15:

The isolate No. 15 was refferred to Az. chroococcum A₁₅ as in isolate 4, the effect of Sevin, Larvin and Lannate on Az. chroococcum No. 15 growth at different time intervals of 1,5,10 and 15 days, was investigated.

As shown in Table (12) and Fig (10), the insecticide Sevin stimulate the growth of this isolate, recording 102, 138 and 155% of the control at Sevin doses of 150, 750 and 1500 ug/100 ml culture respectively after 15 days of incubation. Also high growth of 221 and 108% of control occured at Sevin dose of 150 ug/after incubation periods of 1 and 5 days, respectively.

At doses of Sevin and after incubation periods other than, mentioned above, Sevin had a negative effect on Az chroococcum. A₁₅ growth compared to control. Also, by using different doses of the insecticide Larvin, and at different incubation periods, the growth rates of Az. chroococcum A₁₅ were decreased except at dose 500 ug/100 ml culture at incubation periods of 1 and 10 days, recording 121 and 118% of control, respectively. The insecticide Lannate had a stimlatory effect on the Az. chroococcum. A₁₅ growth using 30,150 and 300 ug/100 ml culture medium after incubation periods of 10 and 15 days. Also high growth was recorded at Lannate doses of 30 and 150 ug/100 ml culture medium 1 and 5 days, respectively compared to control. At doses and incubation periods other than mentioned above, Lannate depressed the growth of this organism.

Experimental Results

Table (12) Effect of carbamat insecticides on the dry weight of Az chroococcum A_{15}

Time	- - 1 - 1			Dry w	eight	(mg/10	00 ml c	culture))	
in		Sevi	n (ug)		La	rvin ((Ug)	Lar	nate ((ug)
days	Con.	150	750	1500	50	250	500	30	150	300
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	28.0	62.0	20.0	30.0	28.0	28.0	34.0	59.0	14.0	12.0
5	90.0	98.0	82.0	86.0	70.0	88.0	84.0	60.0	102.0	46.0
10	76.0	74.0	14.0	50.0	69.0	58.0	90.0	95.0	80.0	106.0
15	116.0	118.0	160.0	180.0	98.0	68.0	112.0	152.0	130.0	194.0

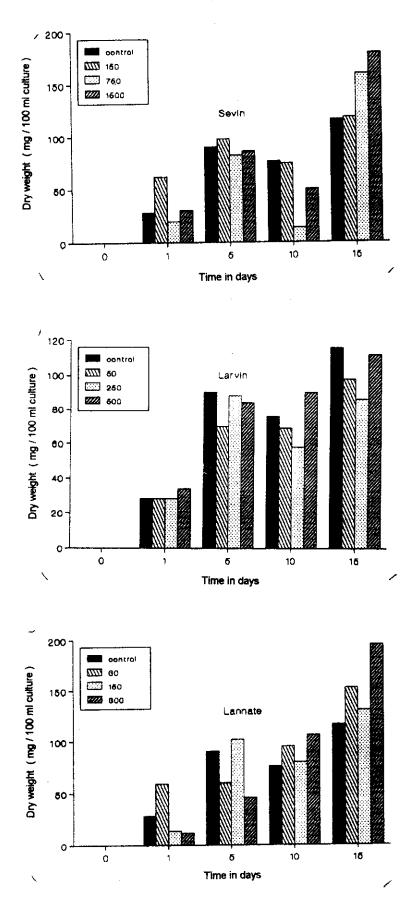
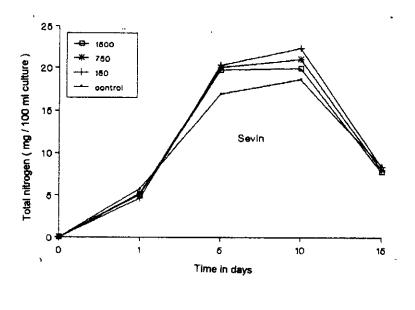
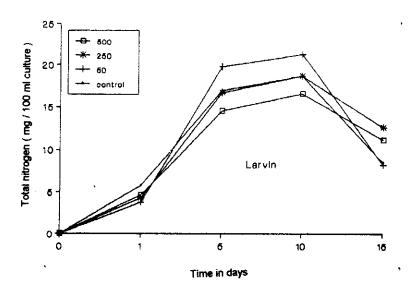


Fig. (10) Effect of carbamate insecticides on the dry weight of Az. chroococcum A₁₅

The Effect on the Total Fixed Nitrogen:


With the aim of studying the effect of insecticides on nitrogen fixation by Az. chroococcum A_4 and A_{15} different doses of (the recommended dose, 5-fold and 10-fold) were used in Ashbey's medium.


(I) Azotobacter Chroococcum A4:

As presented in Table (13) and Fig (11) paralle to the control cultures, doses the nitrogen fixed by Az. chrococcum. A_4 in the presence of different doses (the recommended dose, 5-fold & 10-fold) of Sevin, Larvin and L annate was increased by time untile 10 days at which the highest amounts were recorded, and then decreased after 15 days incubation time. Compared to control, and in the presence of Sevin higher amounts of the fixed nitrogen were obtained after 5 and 10 days incubation times at the all doses used. However, at incubation time other than mentioned above, Sevin had a depressing effect on the nitrogen fixation by Azotobacter chroococcum A4. Using Larvin, the fixed nitrogen recorded higher values at the lowest dose only (the recommended dose) after 5 and 10 days incubation, giving 116 and 114% of control, respectively. At doses higher than the recommended dose, Larvin had a negative effect on the nitrogen fixation along the experimental period. At the recommended dose of Lannate, the highest amounts of fixed nitrogen was obtained after 10 days incubation time. In general, by using the three insecticides (Sevin, Larvin & Lannate), increased, the amount of fixed nitrogen by Az chroococcum A4 decreased.

Table (13): Effect of carbamate insecticides on the total nitrogen fixing efficiency of Az chroococcum A4

Time			Total	nitrog	gen (mg	/100ml	cultu	re)		
in	· · · · · · · · · · · · · · · · · · ·	Sevi	n (ug)		La	rvin (ug)	Lan	nate (ug)
days	Con.	150	750	1500	50	250	500	30	150	300
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	5.78	4.67	5.22	5.04	3.73	4.29	4.67	6.34	4.48	4.48
5	16.98	20.34	20.06	19.78	19.78	16.73	14.55	18.29	18.10	14.55
10	18.66	22.39	21.09	19.97	21.27	18.65	16.61	28.93	21.83	21.09
15	8.58	8.50	8.10	7.84	8.33	12.69	11.20	8.57	10.26	10.26

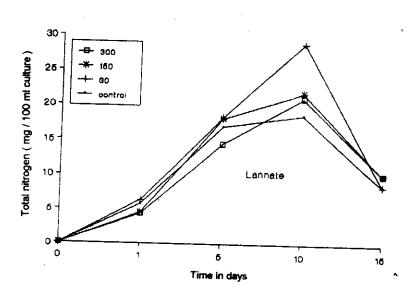


Fig. (11) Effect of carbamate insecticides on the total nitrogen fixing efficiency of Az. chroococcum A₄

(II) Azotobacter chroococcum A_{15} :

The results given in Table (14) and Fig (12) show that, using sevin at the recommended dose, 5-fold and 10-fold and also in control cultures, the highest values of the fixed nitrogen were obtained after 5 days incubation, by Az. chroococcum A₁₅. Compared to control, at the recommended dose of Sevin higher amounts of the fixed nitrogen were recorded at the different time intervals tested. Gererally, the insecticide Sevin stimulate the nitrogen fixation by the tested bacterium, but the amount of fixed nitrogen decreased as the dose increased. On the other hand, by using Larvin at different doses and at the different incubation periods, the nitrogen fixed was depressed to lower values compared to control. The third insecticide Lannate stimulate the nitrogen fixation by Az. chroococcum A₁₅ at the recommended dose and 5-fold after 5 days incubation. The amounts of fixed nitrogen differ widely with the type and dose of insecticides as well as the incubation period.

Table (14): Effect of carbamate insecticides on the total nitrogen fixing efficiency of Az chroococcum A_{15}

Time in days	Total nitrogen (mg/100 ml culture)									
	Sevin (ug)				Larvin (ug)			Lannate (ug)		
	Con.	150	750	1500	50	250	500	30	150	300
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	4.71	6.35	5.82	5.60	3.08	5.32	4.29	3.55	4.11	6.34
5	19.79	21.65	20.16	18.11	18.11	17.92	17.92	24.26	20.16	19.41
10	18.29	21.09	18.95	17.55	16.99	17.55	17.36	17.92	19.60	18.67
15	7.47	8.21	8.97	8.21	5.04	7.09	5.60	7.09	8.21	6.34

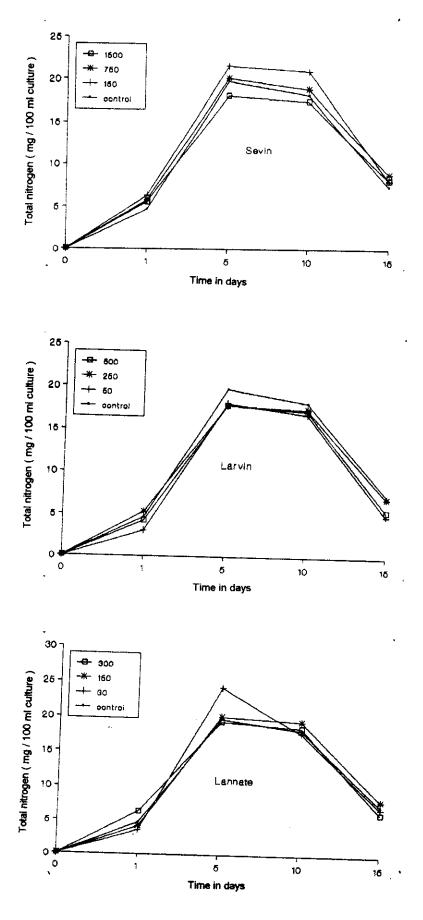
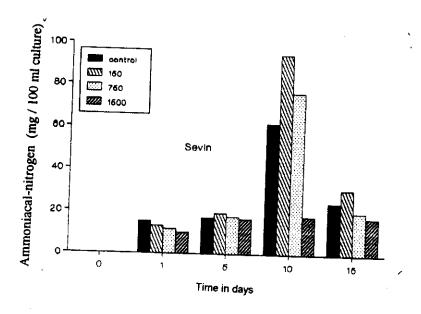
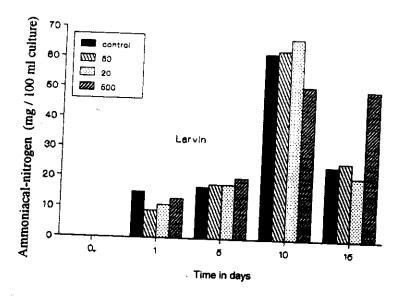


Fig. (12) Effect of carbamate insecticides on the total nitrogen fixing efficiency of Az. chroococcum A₁₅

The Effect an Ammoniacal Nitrogen Content:

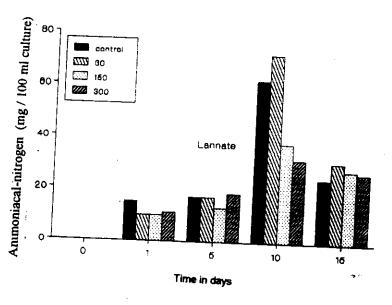

The purpose of the present experiment was to study the effect of certain carbamate insecticides on the ammoniacal nitrogen produced by Az.chroococcum A₄ and A₁₅. Different doses (the recommended dose, 5-fold & 10-fold) of Sevin, Larvin and Lannate were added to Ashbey's medium and the experiment was conducted as described in material and methods.

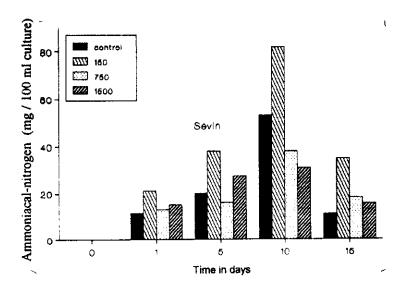

(I) Azotobacter chroococcum A4:

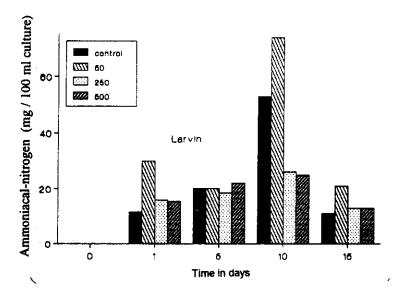
As shown in Table (15) and Fig (13), generally, the production of the ammoniacal nitrogen in the insecticide treated cultures, followed the same pattern as in control culture. Using Sevin, the highest value of ammoniacal nitrogen was recorded after 10 days of incubation at the recommended dose. Also high amounts of ammoniacal nitrogen were obtained at 5-fold the recommended field dose after the same incubation period. Ammonical nitrogen production behaved the same trend using Larvin and Lannate as Sevin, where the highest values were obtained at the recommended dose after 10 days of incubation by Az chroococcum A₄. An irregular effect of both Larvin and Lannate, ranging from stimulation to depression of ammoniacal nitrogen production was noticed at different doses after various incubation periods.

Table (15): Effect of carbamate insecticides on ammoniacal-nitrogen formation of Az. chroococcum \mathbf{A}_4

Time		Aı	mmonia	cal-ni	trogen	(mg/1	00 ml (cultur	e)	
in		Sev	in (ug)	L	arvin	(Ug)	Laı	nnate	(ug)
days	Con.	Sevin (ug) Larvin (Ug) Lannate Con. 150 750 1500 50 250 500 30 150	150	300						
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	15.0	13.0	11.5	10.0	9.0	11.0	13.0	10.0	10.0	11.0
5	17.0	19.0	17.5	16.4	18.0	18.0	20.0	17.0	13.0	18.5
10	62.0	95.0	76.5	18.0	63.0	67.0	51.0	72.0	38.0	32.0
15	24.5	31.0	20.0	17.5	26.0	21.0	50.0	31.0	28.0	27.0




Fig. (13) Effect of carbamate insecticides on the ammoniacal nitrogen formation by Az. chroococcum A₄


(II) Azotobacter chroococcum A₁₅

The production of ammoniacal nitrogen by Az chroococcum A₁₅ widely affected by the insecticides, Sevin, Larvin and Lannate after different time intervals. It can be noticed from the results presented in Table (16) and Fig (14) that, the highest ammoniacal nitrogen production was obtained at the recommended dose of Sevin, Larvin and Lannate after incubation period of 10 days by Az chroococcum A₁₅. Unsteady effect of Sevin, Larvin and Lannate was noticed at the various doses tested along the experimental period.

Table (16): Effect of carbamate insecticides on ammoniacal-nitrogen formation of Az. chroococcum A₁₅

Time		A	mmonia	cal-ni	trogen	(mg/1	00 ml	cultur	e)	
in days		Sev	in (ug)	L	arvin	(ug)	La	nnate	(ug)
days	Con.	150	750	1500	50	250	500	30	150	300
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	11.5	21.0	13.0	15.0	30.0	16.0	15.5	13.5	21.0	15.0
5	20.0	38.0	16.0	27.5	20.0	18.5	22.0	18.5	23.0	19.0
10	53.0	82.0	38.0	31.0	74.0	36.0	25.0	61.0	27.0	15.0
15	11.0	35.0	18.0	15.5	21.0	13.0	13.0	6.0	8.5	8.5

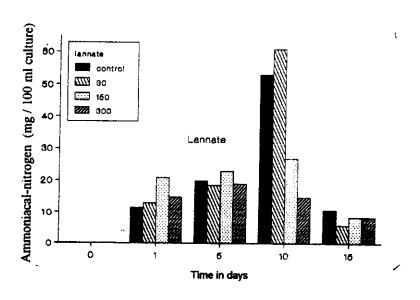
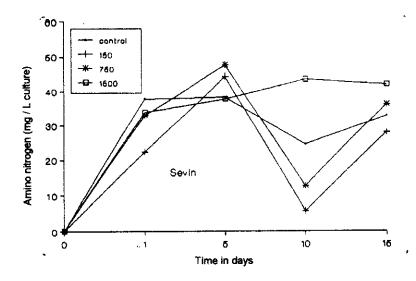
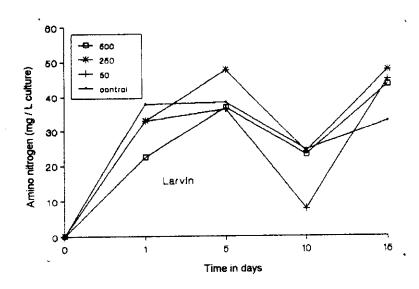


Fig. (14) Effect of carbamate insecticides on the ammoniacal nitrogen formation by Az. chroococcum A₁₅

The Effect on Amino-Nitrogen Content:


As in total and ammoniacal-nitrogen contents, the aim of this experiment was to study the effect of carbamate insecticides (Sevin, Larvin & Lannate) on the production of amino-nitrogen by Az. chroococcum A₄ and A₁₅ in Ashbey's medium.


(I) Azotobacter chroococcum A4

The results given in Table (17) and Fig (15) show that as in control cultures, the amounts of amino nitrogen produced by Az. chroococcum A4 using different doses (the recommended dose, 5-fold & 10 fold) of Sevin, Larvin and Lannate increased with time until 5 days at which the highest values were recorded, and then decreased after 10 days and again increased after 15 days of incubation. Compared to control cultures, high production of amino nitrogen was obtained using the insecticide, Sevin at the recommended dose and 5-fold after 5 days of incubation and after 15 days of incubation at 5-and 10-fold the recommended dose by Az. chroococcum A₄. Using the three insecticides at the various doses used, after one day of incubation, the amounts of amino nitrogen produced by this organism were low compared to those of control cultures. The insecticide Larvin stimulate the production of amino nitrogen by the tested bacterium only after 5 and 15 days of incubation at various tested doses. On the other hand, the insecticide Lannate depressed the amino nitrogen production under all experimental conditions tested except after 5 days at 1- and 5-fold the recommended dose, where high production was obtained compared to control.

Table (17): Effect of carbamate insecticides on amino-nitrogen formation of Az. chroococcum A_4

Time			Am	ino-ni	trogen	(mg/L	cultu	re)		
in days		Sev	in (ug)	L	arvin	(ug)	La	nnate	(ug)
days	Con.	150	750	1500	50	250	500	30	150	300
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	37.8	22.4	32.9	33.8	32.9	32.9	22.4	28.0	33.6	21.7
5	38.4	44.1	47.6	37.8	36.4	47.6	36.8	42.0	43.4	30.6
10	24.5	5.6	12.6	43.4	7.7	24.0	23.1	36.3	19.6	20.3
15	32.9	28.0	36.4	42.0	44.8	46.6	43.4	16.8	16.8	16.8

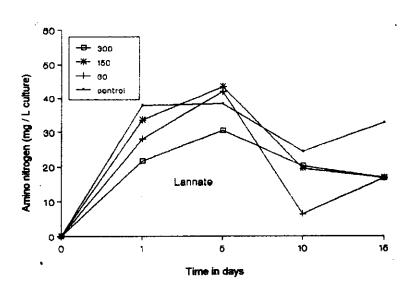
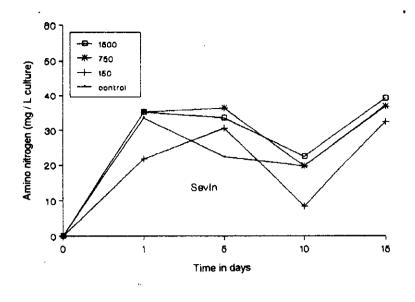
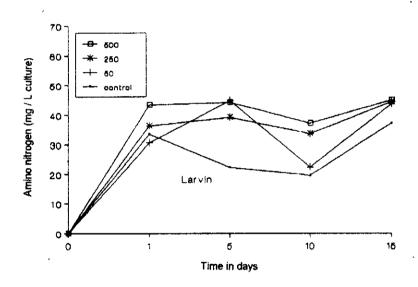


Fig. (15) Effect of carbamate insecticides on the amino nitrogen formation by Az. chroococcum A₄


(II) Azotobacter chroococcum A_{15} :


The influence of carbamate insecticides (Sevin, Larvin & Lannate) on the amount of amino Nitorgen produced by Az. chroococcum A15 was also investigated in Ashbey's medium.

It is noticed from Table (18) and Fig (16) that in control cultures, high value of amino nitrogen was recorded after one day of incubation then decreased by time until 15 days at which the highest amount was recorded. Using both Sevin and Larvin at 5-and 10-fold the recommended dose, the amino nitrogen production was stimulated to levels higher than control at the different time intervals tested. On the other hand, the insecticide Lannate had a depressing on the amino-nitrogen production by Az. chroococcum A₁₅ under experimental conditions used, compared to control, except at 5-and 10-fold the recommended dose after incubation periods of 5 and 15 days where the highest values were obtained.

Table (18): Effect of carbamate insecticides on amino-nitrogen formation of Az. chroococcum A₁₅

Time			Ami	no-nit	rogen	(mg/L	cultur	e)		
in	0	Sev	in (ug)	L	arvin	(ug)	Laı	nnate	(ug)
days	Con.	150	750	1500	50	250	500	30	150	300
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	33.6	21.7	35.2	35.2	30.6	36.4	43.4	22.4	28.0	22.4
5	22.4	30.6	36.4	33.6	44.8	39.2	44.1	20.3	37.8	33.6
10	19.6	8.4	19.6	22.4	22.4	33.6	37.1	10.5	19.6	13.3
15	37.1	32.4	36.8	39.2	43.4	44.1	44.8	12.6	21.7	22.4

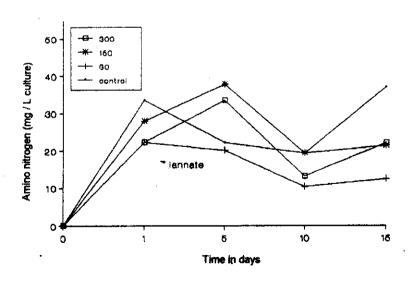
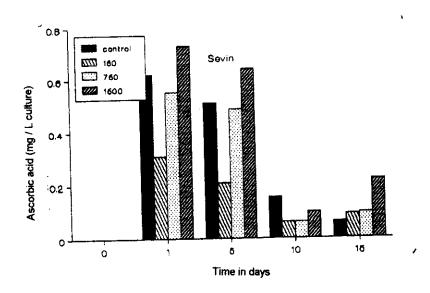
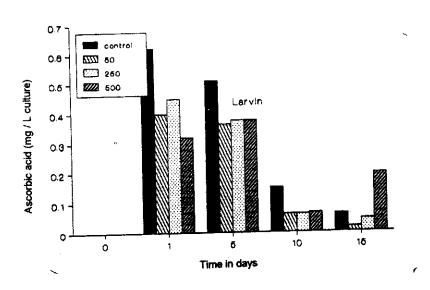


Fig. (16) Effect of carbamate insecticides on the amino nitrogen formation by Az. chroococcum A₁₅

The Effect on Ascorbic Acid Production:


To study the effect of insecticides on ascorbic acid production by Az. chroococcum 4,15, the organisms were grown in the presence of different doses of Sevin, Larvin and Lannate, and the produced ascorbic acid was determined at different time intervals of 1,5,10 and 15 days as previously described.


(I) Azotobacter chroococcum A_4 :

As shown in Table (19) and Fig (17), the production of ascorbic acid in control cultures (without insecticide) decreased with time. However, using Sevin at the recommended dose, 5-fold and 10-fold, high levels of ascorbic acid were produced, recording 141, 149 and 348% control, respectively after 15 days incubation. Also, high production of as ascorbic acid was obtained by using 10-fold the recommended dose after 1 and 5 days incubation, giving 118 and 126% of control, respectively. At doses of Sevin after incubation periods other than the mentioned above, Sevin had a negative effect on ascorbic acid production by Az. chroococcum. A₄. By using Larvin at different doses and after different incubation periods, lower levels of ascorbic acid were produced compared to those of control, except at the dose of 500 ug/100 ml culture after 15 days incubation where high production was obtained (311% of control). Also, Lannate had a depressing effect on ascorbic acid production by this organism, except at doses of 30 and 300 ug/100 ml culture after 1 and 5 days incubation, repectively, where high production was obtained (161 and 454% of control respectively).

Table (19): Effect of carbamate insecticides on ascorbic acid production by Az chroococcum ${\bf A}_4$

Time			Asc	corbic	acid (mg/L o	culture	e)		
in		Sevi	in (ug))	Lā	rvin ((Ug)	Lar	nnate ((ug)
days	Con.	150	750	1500	50	250	500	30	150	300
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	0.621	0.308	0.554	0.732	0.397	0.447	0.320	1.000	0.509	0.263
5	0.509	0.208	0.487	0.643	0.364	0.375	0.376	0.333	0.372	0.532
10	0.152	0.063	0.063	0.096	0.063	0.063	0.067	0.045	0.031	0.074
15	0.063	0.089	0.094	0.219	0.018	0.045	0.196	0.040	0.052	0.286

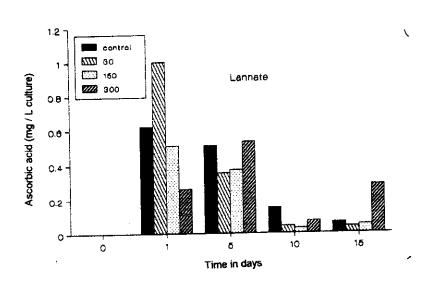
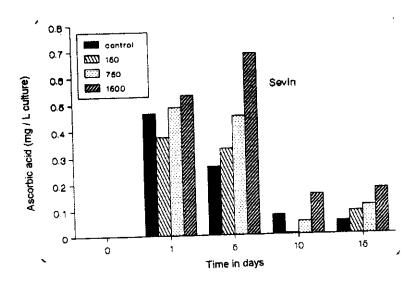
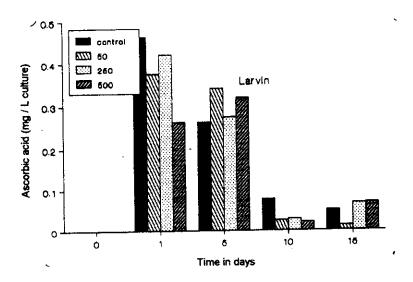


Fig. (17) Effect of carbamate insecticides on the ascorbic acid production by Az. chroococcum A₄


- -


(II) Azotobacter chroococcum A₁₅:

As in Az. Chroococcum. A₄, the amounts of ascorbic acid produced by control cultures decreased with time Table (20) and Fig(18). However, in the presence of Sevin (the recommended dose, 5-fold and 10-fold), higher amounts of ascorbic acid were produced by this bacterium, recording the highest production after 5 days at 10-fold the recommended dose. By using Larvin after 5 days incubation at doses of 50, 250 and 500 ug/ 100 ml culture and after 15 days at doses of 250 and 500 ug/ 100 ml culture higer levels of ascorbic acid were produced by this organism, compared to control. Under conditions other than mentioned above, Larvin had a depressing effect on ascrobic acid production by Az. chroococcum A₁₅. The ascorbic acid production was increased compared to control by Lannate but only after one day at dose of 30 ug/100 ml culture, after 5 days at doses of 150 and 300 ug/100 ml culture. In general, under the other experimental conditions used, Lannate depressed the production of ascorbic acid by Az. chroococcum. A₁₅.

Table (20): Effect of carbamate insecticides on ascorbic acid production by Az chroococcum A_{15}

Time			Asco	rbic a	cid (m	g/L cu	lture)			
in		Sevi	n (ug)		La	rvin (ug)	Lan	nate (ug)
days	Con.	150	750	1500	50	250	500	30	150	300
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	0.464	0.375	0.487	0.532	0.375	0.421	0.263	0.989	0.294	0.286
5	0.263	0.330	0.453	0.688	0.342	0.272	0.319	0.196	0.375	0.587
10	0.078	0.006	0.051	0.152	0.026	0.029	0.022	0.049	0.054	0.063
15	0.051	0.089	0.107	0.172	0.013	0.067	0.069	0.040	0.047	0.07

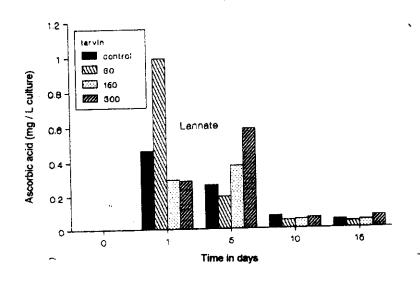
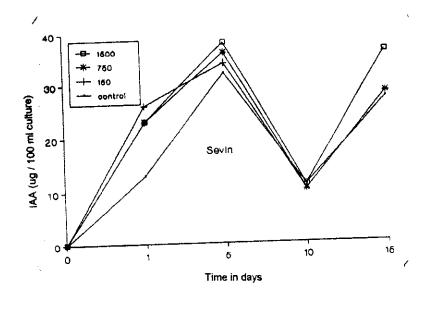
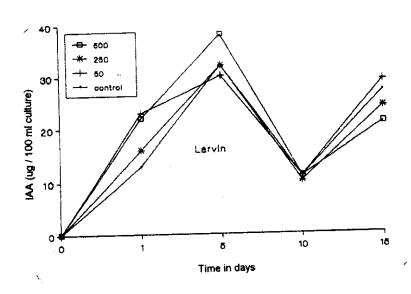


Fig. (18) Effect of carbamate insecticides on the ascorbic acid production by Az. chroococcum A₁₅

...

The Effect on the Biosynthesis of Indole-3-acetic acid (IAA):


In the present experiment, the effect of different concentrations of carbamate insecticides (Sevin, Larvin & Lannate) on the production of IAA by Az. chroococcum A₄ & A₁₅ was investigated. The organisms were grown in Ashbey's medium containing 1, 5 and 10-fold the recommended dose of insecticide and the amounts of IAA produced were determined after different incubation periods of 1,5,10 & 15 days, as previously mentioned in materials and methods


(I) Azotobacter Chroococcum A4:

It can be noticed clearly from the results given in Table (21) and Fig (19) that both the control cultures and the insecticide treated cultures followed the same pattern in respect to IAA. production, where its produced amounts increased with time until 5 days of incubation and then decreased after 10 days and increased again after 15 days of incubation. Compared to control using Sevin, Larvin and lannate at the various tested doses, the highest amounts of IAA. were produced by Az. chroococcum A4 after one day of incubation, followed by those produced after 5 days and the lowest amouts were produced at 10 days of incubation. In general, the presence of Sevin, Larvin and Lannate at their tested doses stimulated the production of IAA by Az. chroococcum A4 especially Lannate which was the most effective followed by Sevin, after one day of incubation.

Table (21) : Effect of carbamate insecticides on indole-3-acetic acid production by of Az. chroococcum ${\tt A_4}$

Time				IAA.(1	mg/100	ml cul	lture)			
in		Sev	in (ug)	Lá	arvin	(ug)	Laı	nnate	(ug)
days	Con.	150	750	1500	50	250	500	30	150	300
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	13.0	26.0	23.0	23.0	23.0	16.0	22.0	28.0	24.0	36.0
5	32.0	34.0	36.0	38.0	30.0	32.0	38.0	40.0	35.0	34.0
10	11.0	10.0	10.0	11.0	11.0	10.0	11.0	11.0	11.0	10.0
15	27.0	28.0	38.0	36.0	29.0	24.0	21.0	35.0	27.0	23.0

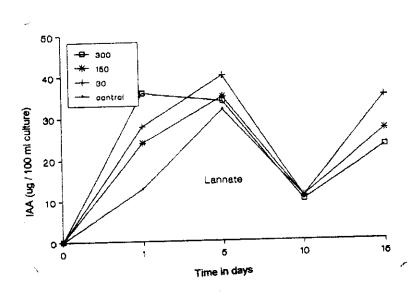


Fig. (19) Effect of carbamate insecticides on indole-3-acetic acid production by Az. chroococcum A₄

(II) Azotobacter chroococcum A₁₅:

The results represented in Table (22) and Fig (20) show that as in Az. chroococcum A4, the production of IAA. by Az. chroococcum A15 in insecticide treated cultures followed the same trend like in control cultures. Also here, the tested insecticides (Sevin, Larvin & Lannate) stimulated the production of IAA by Az. chroococcum A15 especially after 1 and 5 days of incubation.

Table (22):Effect of carbamate insecticides on indole-3-acetic acid production by of Az. chroococcum A₁₅

Time			 -	CAA (mọ	g/100 m	al cult	ure)	<u> </u>		
in		Sev	in (ug)	La	arvin (ug)	Lan	nate (ug)
days	Com	50 1500 50 250		500	30	150	300			
0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00
1	9.0	15.0	12.0	16.0	12.0	15.0	14.0	14.0	13.0	17.0
5	31.0	32.0	36.0	31.0	29.0	31.0	31.0	37.0	34.0	32.0
10	10.0	10.0	10.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
15	21.0	22.0	26.0	21.0	23.0	23.0	31.0	24.0	21.0	19.0

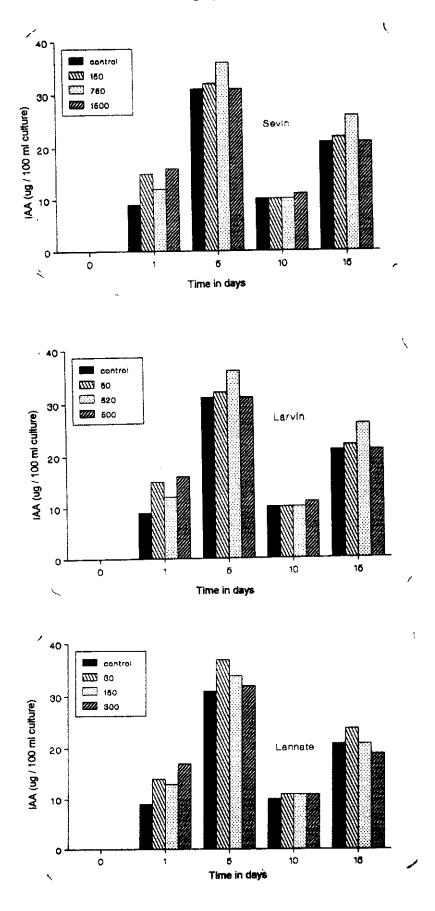


Fig. (20) Effect of carbamate insecticides on indole-3-acetic acid production by Az. chroococcum A₁₅

_ .

THE PEESISTENCE OF INSECTICIDES

The persistency of the carbamate insecticides tested in this work (Sevin, Larvin & Lannate) and their resistance to degradation in cultures, soil samples and cell-free extract of Az. chroococcum A₄ & A₁₅, were investigated. The persistence of insecticide was determined as the nitrogen content of the residual insecticide used under the experimental conditions, as described before.

(a) Persistence of Insecticides in Cultures of Az. chroococcum:

As shown in Table (23 a,b&c and 24 a,b&c) and Figs (21 and 22), the amounts of Sevin, Larvin and Lannate added to cultures of Azotobacter chroococcum A₄ and A₁₅ decreased with time and the lowest amount of the insecticides were recorded at the end of the experimental incubation period (0-24 days). This means that the persistence of the tested insecticides in both Azotobacter chroococcum A₄ and A₁₅ decreased with time. In respect to Lannate, it had a lower persistance compared to those of Sevin and Larvin where, low values of Lannate residues were recorded, in comparison with control of each insecticide. On the other hand, the persistence of the tested insecticides (Sevin, Larvin & Lannate) in Az. chroococcum A₄ cultures, was lower than in Az chroococcum A₁₅ cultures in which higher values of insecticide residues were determined.

Table (23 a) Persistancy of Sevin Time in hours 12 24 0 δ w 0.308 0.448 0.868 2.072 0.672 150 of larvin at different ug/100 ml culture 10.360 5.376 1.904 2.772 4.284 750 13.132 1500 20.720 9.912 6.104 4.200 100.00 41.89 14.86 21.62 32.43 150 ₩ recovery 100.00 51.89 750 26:76 41.35 18.38 1500 100.00 63.38 47.84 20.27 29.46 Amounts of larvin residues culture ug/100 ml culture 100.00 62.84 48.65 150 22.29 32.43 310.13 100.00 389.18 137.85 200.70 750 1500 717.60 304.05 441.90 950.70 100.00

in Az chroococcum A4 culture.

Table (23 b) Persistancy of Larvin in Az chroococcum A4 culture. Time in hours 12 24 0 σ w įΝ₂ 0.532 1.008 1.680 0.280 0.364 of larvin at different ug/100 ml culture 50 6.020 8.400 1.736 2.744 2.968 250 16.800 13.580 5.740 7.168 500 3.976 100.00 60.00 31.67 21.67 16.67 50 % recovery 100.00 250 71.67 35.33 20.67 32.67 500 100.00 80.83 34.17 42.67 23.67 Amounts of larvin residues culture ug/100 ml culture 100.00 30.00 15.84 10.84 50 8.34 100.00 179.18 88.30 250 51.68 88.33 213.35 404.15 100.00 170.85 118.35 500

Table (23.c) Persistancy of Lannate in Az chroococcum A4 culture.

00.00	0.00	00.00	00.00	00.00	00.00	0.000	0.000	0.000	24
18.57	6.44	0.71	6.19	4.29	2.38	0.728	0.252	0.028	12
45.00	17.15	2.86	15.00	11.43	9.52	1.764	0.672	0.112	6
78.57	37.14	6.43	26.19	24.76	21.43	3.080	1.456	0.252	ω
100.00	100.00	100.00	100.00	100.00	100.00	11.760	5.880	1.176	0
300	150	30	300	150	30	300	150	30	SIDOII
residues culture	mounts of larvin residues culture ug/100 ml culture	Amounts of larvin residues culture ug/100 ml culture		% recovery	940	N ₂ of larvin at different ug/100 ml culture	ervin at o	N ₂ of la	Time in

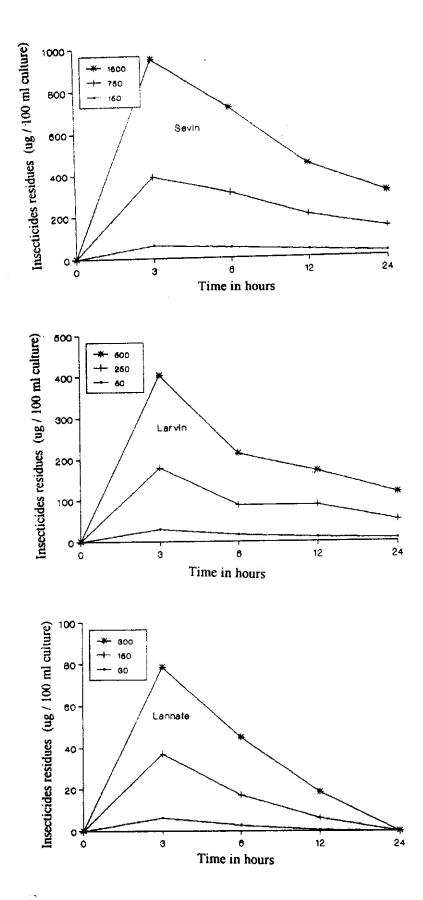
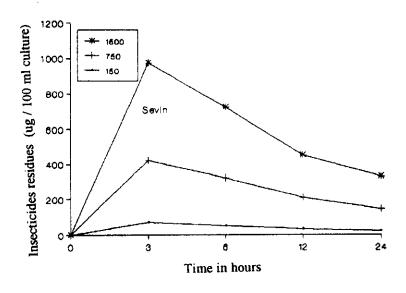
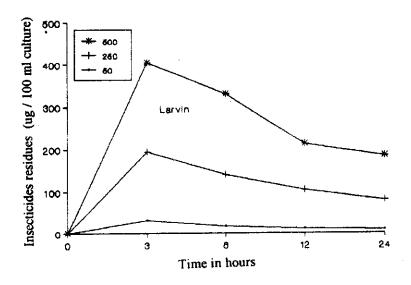


Fig. (21) Persistancy of the carbamate insecticides in Az. chroococcum A₄ culture

Table (24 a) Persistancy of Sevin in Az chroococcum A15 culture.


330.45	145.95	24.33	22.03	19.46	16.22	4.564	2.016	0.336	24
452.10	210.83	34.46	30.14	28.11	22.97	6.244	2.912	0.476	12
723.60	322.28	52.71	48.24	42.99	35.14	9.996	4.452	0.728	6
975.00	421.65	70.95	65.00	56.22	47.30	13.468	5.824	0.980	ω
100.00	100.00	100.00	100.00	100.00	100.00	20.720	10.360	2.072	0
1500	750	150	1500	750	150	1500	750	150	s mon
residues culture	Amounts of larvin residues culture ug/100 ml culture	Amounts c		% recovery	æ	N ₂ of larvin at different ug/100 ml culture	of larvin at diff ug/100 ml culture	N ₂ of 1 ug/1	


Table (24 b) Persistancy of Larvin in Az chroococcum A15 culture.

 	 			·	\ \	ر ت ۲
24	12	6	ω	0	TIO OLE	
0.336	0.420	0.588	1.092	1.680	50	N ₂ of la
2.688	3.500	4.704	6.552	8.400	250	of larvin at diff ug/100 ml culture
6.216	7.140	11.144	13.608	16.800	500	N ₂ of larvin at different ug/100 ml culture
20.00	25.00	35.00	65.00	100.00	50	%
32.00	41.67	56.00	78.00	100.00	250	% recovery
37.00	42.50	66.33	81.00	100.00	500	
10.00	12.50	17.50	32.50	100.00	50	Amounts culture
80.00	104.18	140.00	195.00	100.00	250	Amounts of larvin residues culture ug/100 ml culture
185.00	212.50	331.55	405.00	100.00	500	residues culture

Table (24.c) Persistancy of Lannate in Az chroococcum A15 culture.

						0000			1 7
7.86	00.00	0.00	02.62	00.00	00.00	0.308	0 000	000	ာ သ
									ŧ
54.99	22.86	4.29	18.33	15.24	14.29	2.156	0.896	0.168	1)
				1				177.0	C
77.85	33.57	5.72	25.95	22.38	19 05	3 052	1 316	0 224	v
		,	•			, ,		0.400	Ú
116.40	53.57	7.14	38.80	35 71	22 81	A 564	2 100	ر ا ا	ں
							0.000	1.1/0	C
100.00	100.00	100.00	100.00	100.00	100 00	11 760	088 2	1 176	>
000	- 30	30	300	130	30	300	150	30	
300	150	UE	200	1 5 0	30		•		hours
r curture	culture ug/100 ml culture	culture				ture	ug/100 ml culture	ug/10	in
residues	of larvin	Amounts of larvin residues		% recovery	ο¥ο	different	N_2 of larvin at different	N ₂ of la	Time

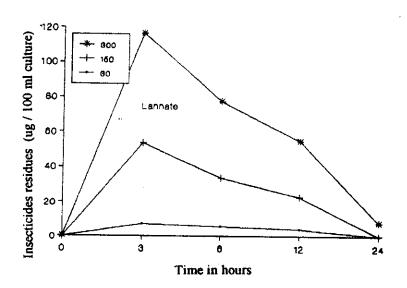


Fig. (22) Persistancy of the carbamate insecticides in Az. chroococcum A₁₅ culture

(b) Persistence of Insecticides in cell-free Extracts of Az. chroococcum:

The effect of cell-free extracts of Az. chroococcum A₄ & A₁₅ on the persistence of the insecticides Sevin, Larvin and Lannate was studied and is illustrated in Tables (25 & 26) and Figs. (23 & 24). As in complete cultures, but here rapidly, the degradation of the tested insecticides incresased with time (0-60 second) using the cell-free extracts of Az. chroococcum A₄ and A₁₅. On the other hand, the persistancies of Sevin, Larvin and Lannate in cell-free extract of Az. chroococcum A₄ were lower than those of Az. chroococcum. A₁₅. Also where, higher amounts of insecticide residues were determined in Az. chroococcum A₁₅ cell-free extract. Compared to each other, using the two cell-free extracts, the insecticide Larvin was more stable than Sevin, and Lannate was the most labile one. In this experiment, very short time intervals (10, 20, 30, 40, 50 & 60 seconds) were applied, which indicates that the cell-free extract containing the bacterial enzymes, was more effective in the insecticides biodegradation process.

Table (25) Persistancy of Carbamate insecticides in soil samples inoculated with Az chroococcum A4

	Time in days	N ₂ of laug/10 Sevin	N ₂ of larvin at different ug/100 gm soil Sevin Larvin Lannate 150 50 30	lifferent Lannate	Sevin	% recovery Larvin 50	Lannate 30	Amounts cculture Sevin 150	Amounts of larvin residues culture ug/100 gm soil Sevin Larvin Lannate 150 50 30
2.072 1.680 1.176 100.00 100.00 100.00 100.00 100.00 10 0.462 0.560 0.168 22.30 33.33 14.29 33.45 1 0.216 0.322 0.098 10.42 19.17 8.33 15.63 0.126 0.182 0.042 6.08 10.83 3.57 9.12 0.070 0.098 0.014 3.38 5.83 1.19 5.07	ua y s	150	50	30	150	50	00	-	
0.462 0.560 0.168 22.30 33.33 14.29 33.45 1 0.216 0.322 0.098 10.42 19.17 8.33 15.63 0.126 0.182 0.042 6.08 10.83 3.57 9.12 0.070 0.098 0.014 3.38 5.83 1.19 5.07	o	2.072	1.680	1.176	100.00	100.00	100.00	100.00	100.00
0.216 0.322 0.098 10.42 19.17 8.33 15.63 0.126 0.182 0.042 6.08 10.83 3.57 9.12 0.070 0.098 0.014 3.38 5.83 1.19 5.07	٠ (0 460	0 560	0.168	22.30	33.33	14.29	33.45	16.67
0.216 0.322 0.030 0.126 0.182 0.042 6.08 10.83 3.57 9.12 0.070 0.098 0.014 3.38 5.83 1.19 5.07	-			0 008	10.42	19.17	8.33	15.63	9.
0.126 0.182 0.042 0.07 0.070 0.098 0.014 3.38 5.83 1.19 5.07	G	0.410	· · · · · · · · · · · · · · · · · · ·) (6 08	10.83	3.57	9.12	5.42
0.070 0.098 0.014 3.38 3.83	0	0.120))	٦ ٥	1 10	5.07	2.
	15	0.070	0.098	0.014	3.38	5. 83	 	0.0	

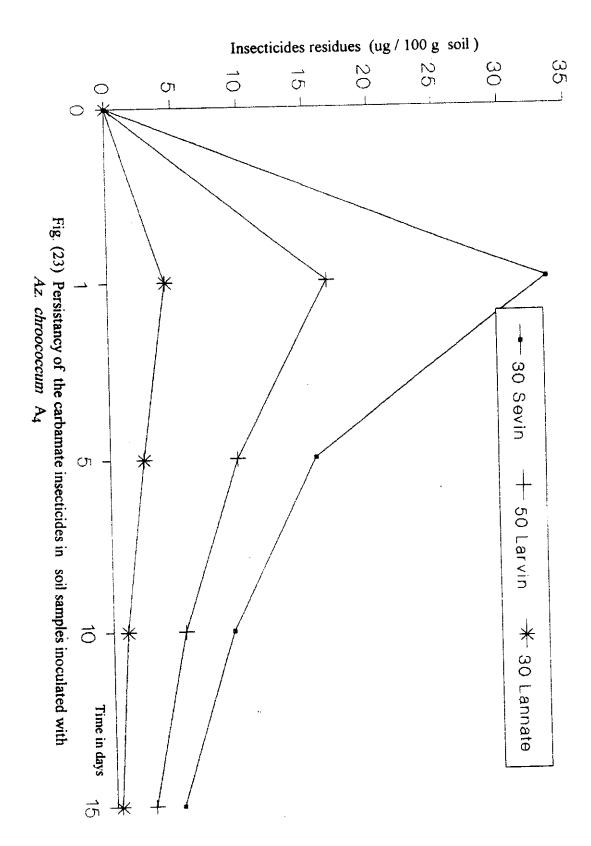
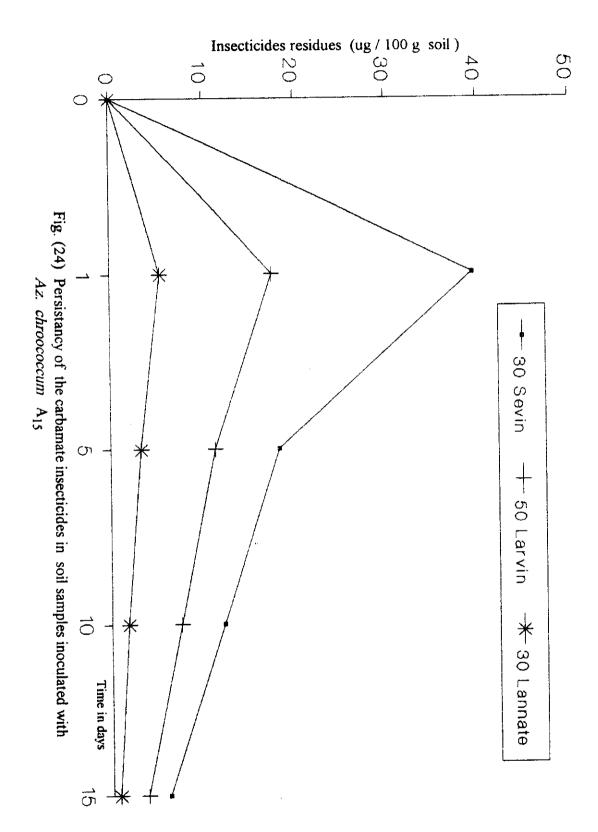



Table (26) Persistancy of Carbamate insecticides in soil samples inoculated with Az chroococcum A₁₅

	3.75	6.08	2.38	7.50	4.05	0.028	0.126	0.084	15
0 71	2 35	12.16	5.95	15.00	8.11	0.070	0.252	0.168	10
1 79	7 . 60	18.24	10.71	22.50	12.16	0.126	0.378	0.546	υī
ນ : ນ : ບ	17.50	39,53	17.86	35.00	26.35	0.210	0.588	0.546	_
100.00	100.00	100.00	100.00	100.00	100.00	1.176	1.680	2.072	0
						, c	0.0	150	
30	50	150	30	50	150	O.E.	n 0		days
Баппасе	Larvin	Sevin	Lannate	Larvin	Sevin	Lannate	Larvin	Sevin	Time
n soil	culture ug/100 gm soil	culture		% Tecovery	о у	ifferent	N ₂ of larvin at different ug/100 gm soil	N ₂ of la	, , , , , , , , , , , , , , , , , , ,
residue	f larvin	Amounts of larvin residues							

(c) Persistence of Insecticides in Inoculated Soil samples:

The persistency of carbamate insecticides in soil samples inoculated with Az. chroococcum A₄ and A₁₅ was also investigated. It can be noticed from Tables (27 & 28) and Figs. (25 & 26) that by using the two strains of Az. chroococcum, the persistence of the tested insecticides (Sevin, Larvin & Lannate) decreased with time. But Lannate was the most labile insecticide followed by Sevin and Larvin which was the most stable one, compared to each other. On the other hand the biodegradation of Sevin, Larvin and Lannate in soil samples inoculated by the Az. chroococcum. A4 was more than that in those inoculated by the other strain where, higher insecticide residues were determined.

Table (27) Persistancy of Carbamate insecticides in cell free extract of with Az chroococcum ${\tt A}_4$

60	50	40	30	20	10	C			Seconds	in		7
0.196	0.280	0.336	0.392	0.532	0.644	4.074	010	100	150	Sevin	ug/10	1 ₂ of 1
0.196	0.252	0.336	0.448	0.560	0.672		1 680		л О	Larvin	ng/100 mr curcure	arvin at
0.000	0.000	0.028	0.084	0.112	0.168	•	1.176	4	30	Lannate	4	N ₂ of larvin at different
9.46	13.51	16.22	18.92	25.68	30.08)	100.00		150	Sevin		•⁄•
11.67	15.00	20.00	26.63	33 33	40.00		100.00		50	Larvin		% recovery
0.00	0.00	2.38	7.14	9.52		14 29	100.00		30	Lannace		
14.19	20.21	20 27	20.50	30.00	ا ا ا	45.12	100.00		150	SEATI	C Assista	Amounts o
. O.	л В	7	10 00	12 27	16 67	20.00	100.00		50		T.arvin	Amounts of larvin residues culture ug/100 ml culture
	0.00	0.00	0.71	0.14	2.86	4.29	100.00		30	30	Lannate	residues culture

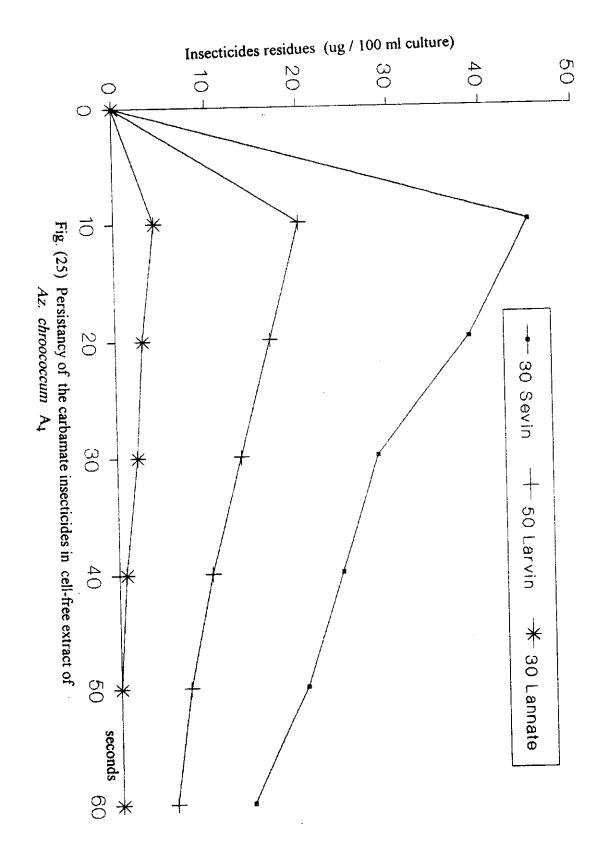
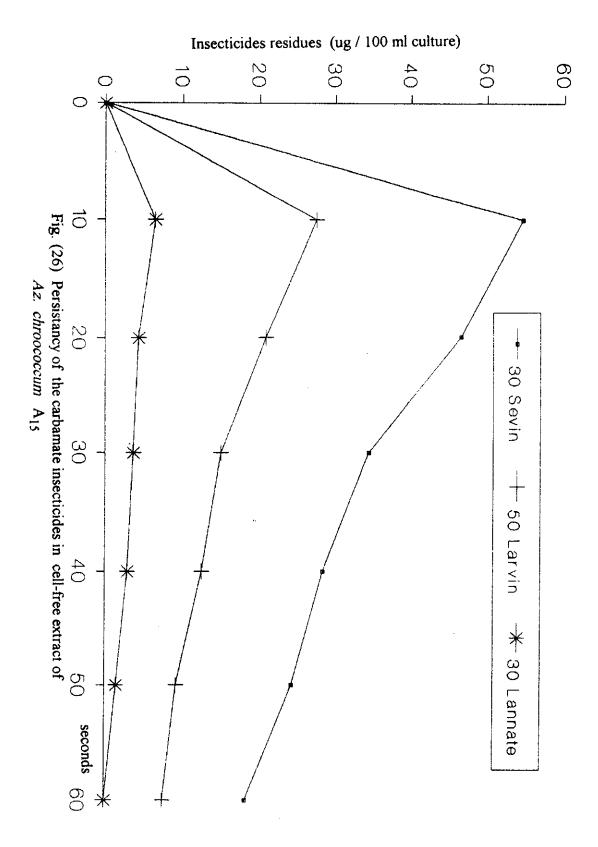



Table (28) Persistancy of Carbamate insecticides in cell free extract of with Az chroococcum A₁₅

			_	
12.16 15.00	0.000	0.252 0.258		60
16.22 18.33	0.056	0.336 0.308		50
	0.112	0.396 0.420		40
		0.476 0.504		30
	0.168	0.644 0.700		20
				10
36.40 55.00	0 252			
100.00 100.00	1.176		J	,
	30			
			7	Seconds
Sevin Larvin	Lannate	in Tarvi	2	Time
% recovery	t different llture	of larvin a	N2	
% rec	ent ate	at differen alture Lannate 30 1.176	of larvin at differ 19/100 ml culture 19/100 ml	N ₂ of larvin at d ug/100 ml cultu Sevin Larvin 150 50 2.072 1.680 0.756 0.924

