RESULTS

This work was carried out on 100 players, sharing in different types of sports. Thirty of them (30%) were football male players, twenty five of them (25%) were weight lifters male players, twenty of them (20%) were tennis players (10 males and 10 females) and twenty five (25%) of them were volleyball players (15 males and 10 females). Their age varied between 18 and 28 years with a mean age 24 ± 2.8 years.

Forty of these players (40%) were complaining from low back pain as a current or a previous symptom, 9 (9/40%) of them were football players, 15 of them (15/40%) were weight lifters, 9 of them (9/40%) were tennis players and 7 (7/40%) were volleyball players.

The maneuvers during playing were:

Twisting : Mainly in tennis player and less common in football players.

Hyperextension: Mainly in volleyball players and less common of in football players.

Lifting : Mainly in weight lifters

Jumping : Mainly in football and volleyball players.

A control group of 100 persons (50 males and 50 females), age and sex matched to our patient. Twenty-five of these subjects (25%) complained of low back pain as a current or previous symptom.

The results of our study are tabulated and the following observation was noticed:-

Table (1)

The prevalence of low back pain in the study and control groups. In the study group, the age ranged between 19-28 years, the prevalence is higher in weight lifter (60%). In tennis the prevalence is higher in female (5) than male (4).

In the control group the age ranged between 19-27, two of them were diagnosed as inflammatory spondyloarthropathies.

Table (2)

Statistical analysis of prevalence of low back pain in study and control groups.

In weight lifting and tennis, there is significant difference in the prevalence of low back between them and control group (P < 0.05)

Table (3):

Comparison between causes of LBP in the study and control group.

High incidence of disc prolapse (35%) was observed between players. In the control group, muscle strain (30.4) was mostly observed. Back muscle strain was present in (2/10) in football players, (2/10) in weight lifters, (4/10) in tennis players and (2/10) in volleyball players. Disc prolapse was present in (3/14) in football players, (6/14) in weight lifters, (2/14) in tennis players and (3/14) in volleyball players. Ligamentous

sprain was present in (3/8) in football players, (2/8) in weight lifters, (1/8) in tennis players, (2/8) in volleyball players.

Spondylolisthesis was present in (1/8) in football players, (5/8) weight lifter and (2/8) in tennis players.

Table (4):

Radiological changes in the study and control groups.

There is significant difference (P < 0.05) between the study and control groups as regard loss of lumbar lordosis, fracture of pars interarticularis and spondylolisthesis.

Table (5) & Fig. (1-1)

Mean values of measurement of normal vertebrae from thoracic 11 to lumbar 5 as regards wedge, biconcavity and compression.

Table (6) & Fig. (1-2)

Mean values of measurement of vertebrae of the control group from thoracic 11 to lumbar 5 as regards wedge, biconcavity and compression.

Table (7) & Fig. (1-3)

Mean values of measurement of vertebrae of the study group from thoracic 11 to lumbar 5 as regards wedge, biconcavity and compression.

Table (8)

Comparison between number and percentage of vertebral deformities in the study and control groups. Vertebral deformities were present in \$/40 players (20%), while they were found in (2/23) persons of the control group (8.6%).

In study group, 8 players representing 12 type of deformities, while in control group 2 persons were representing 3type of deformities.

Measurement of vertebral deformities:

Wedge deformity = $(hp - ha) hp \times 100$

Biconcavity deformity = $(hp - hm) hp \times 100$

Compression deformity = $(hp'-hp) hp' \times 100$

Fig. (2)

In the study group, vertebral deformities were present in 8 players as follow:

In football 2 vertebral deformities

In weight lifter 4 vertebral deformities

In tennis 1 vertebral deformities

In volleyball 1 vertebral deformities

Fig. (3,4)

Shows fracture of pars interarticularis and spondylolisthesis.

Fig. (5)

Shows loss of lumbar lordosis.

Fig. (6)

Shows scoliosis.

Table (1)

Prevalence of low back pain in the study and control groups

Studied groups	Sex	Mean age in yrs* ± SD	Mean duration in playing in yrs	Numbe	er %
(A) Study group.				40/100	40
1- Football	Males	23.6 ± 2.4	5.6	9/30	30
2- Weight lifting	Males	26.1 ± 1.4	6.2	15/25	60
3- Tennis	4 males	19.7 <u>+</u> 1.9	5.8	9/20	45
	5 females	21 ± 1.2	5.7		
4- Volleyball	4 males	23.5 ± 0.5	7.4	7/25	28
	3 females	26 ± 0.8	6.7		
(B)Control group.	10 males	23.4 ± 0.5		25/100	25
	15females	26 ± 0.8			

N.B: yrs* = years

Table (3):

Comparison between causes of LBP in the study and control group.

Causes of LBP	Study group(40)		Control group.		Stat. analysis	
Studied GPS	No.*	%	No.*	%	Z	P
1-Back muscle strain	10	25.0	7	30.4	0.133	>0.05
2- Ligamentous sprain	8	20.0	6	26.1	0.338	>0.05
3- Disc prolapse	14	35.0	2	8.6	2.545	<0.05
4- Spondylolisthesis	8	20.0	1	4.3	1.9732	<0.05
5- Posture	0	0	7	30.43	1.744	>0.05

N.B. : No.* = Number

Table (4):

Radiological changes in the study and control groups.

Studied GPS	Study groups		Control GPS		Stat. Analysis	
Radiological changes	No.	%	No.	%	Z	Р
1- Scoliosis	3	7.5	1	4.3	0.030	>0.05
2- Loss of lumbar lordosis	20	50.0	3	13.1	2.983	<0.05
3- Fracture of pars interarticularis and Spondylolisthesis	8	20.0	1	4.3	1.991	<0.05

N.B. : No.* = Number

GPS. : Groups.

Table (5):-

Mean values of measurement of normal vertebrae from thoracic 11 to lumbar 5 as regards wedge, biconcavity and compression.

Measurement Vertebral Number	Wedge	Biconcavity	Compression	
T ₁₁	13.2 ± 1.5	14.2 ± 1.5	1.6 ± 0.6	
T ₁₂	13.5 ± 1.4	14.3 ± 0.9	1.7 ± 0.6	
L_1	13.0 ± 1	13.8 ± 1.9	1.7 ± 0.3	
L_2	12.8 ± 1	14.1 ± 0.8	1.9 ± 0.5	
L_3	12.6 ± 0.7	13.4 ± 0.9	1.7 ± 0.3	
L_4	12.6 ± 0.8	12.6 ± 0.8	1.6 ± 0.4	
L ₅	13.4 ± 1.4	14.2 ± 1.5	1.8 ± 0.2	

Table (6)

Mean values of measurement of vertebrae of the control group from

thoracic 11 to lumbar 5 as regards wedge, biconcavity and compression.

Measurement Vertebral Number	Wedge	Biconcavity	Compression
T ₁₁	12.9 ± 1.5	14.4 ± 0.8	1.8 ± 0.5
T ₁₂	13.6 ± 1.1	14.2 ± 1.2	1.8 ± 0.6
L_{l}	13.7 ± 1.3	14.2 ± 0.9	1.7 ± 0.5
L_2	11.5 ± 1.3	13.9 ± 1.2	1.7 ± 0.7
. L ₃	12.4 ± 1.5	13.1 ± 1.1	1.8 ± 0.6
L ₄	13.1 ± 0.9	14.2 ± 0.9	2.8 ± 0.5
L ₅	12.5 ± 1.4	13.4 ± 1.1	2.1 ± 0.6

Table (7)

Mean values of measurement of vertebrae of the study group from thoracic 11 to lumbar 5 as regards wedge, biconcavity and compression.

Measurement Vertebral lumber	Wedge	Biconcavity	Compression
T_{11}	13.6 ± 1.7	14.1 ± 0.8	1.7 ± 0.5
T ₁₂	13.3 ± 1.6	13.7 ± 1.2	1.7 ± 0.6
Lı	13.2 ± 0.9	13.6 ± 1.6	2.4 ± 0.7
L ₂	13.1 ± 1.6	14.5 ± 1.7	1.9 ± 0.8
L ₃	13.6 ± 0.9	14.7 ± 1.1	2.1 ± 0.6 ·
L ₄	13.6 ± 1.2	14.8 ± 1.3	1.7 ± 0.7
L ₅	13.7 ± 0.9	15.1 ± 0.8	2.1 ± 0.4

Table (8)

Comparison between number and percentage of vertebral deformities in the study and control groups.

Studied group	Study group			Control group			Stat. Analysis	
Deformity type	No.* %	Vertebra affected	No.	* %	Vertebra affected	Z	P	
Compression	2 25	L ₃ , L ₄	1	50	T ₁₂			
alone		,			:	ŧ		
Wedge alone	1 12.5	T ₁₁	0	0				
Biconcavity	1 12.5	L_3	0	0		 		
alone								
Compression +	1 12.5	T ₁₂	1	50	L_2			
Wedge								
Compression +	1 12.5	L ₂	Ó	0				
Biconcavity								
Wedge +	1 12.5	L_4	0	0		<u> </u>	,	
Biconcavity								
All three types	1 12.5	L ₂	0	0				
Total	8/40 20	'	2/23	8.6		0.378	>0.05	

N.B. No.* = Number

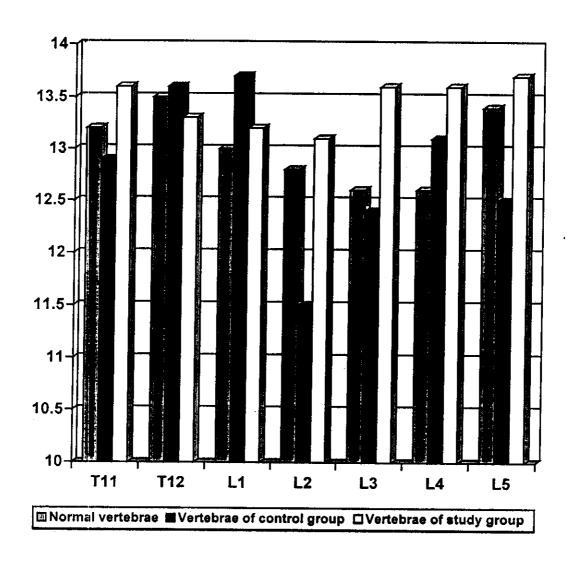


Figure (1-1): Wedge values of normal vertebrae, vertebrae of control group and vertebrae of study group.

with the contraction of the cont

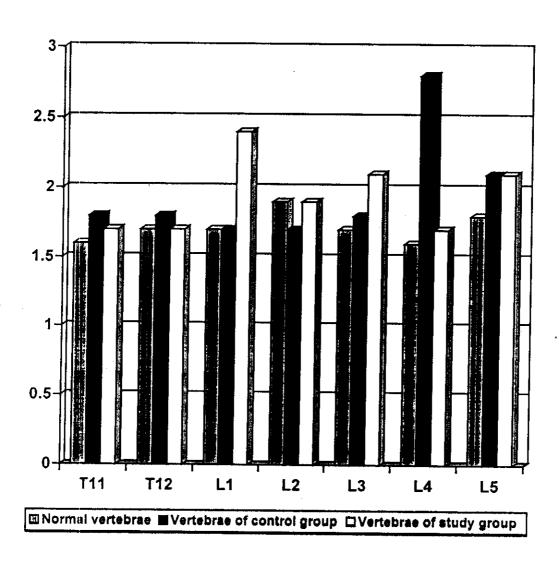


Figure (1-2): Biconcavity values of normal vertebrae, vertebrae of control group and vertebrae of study group.

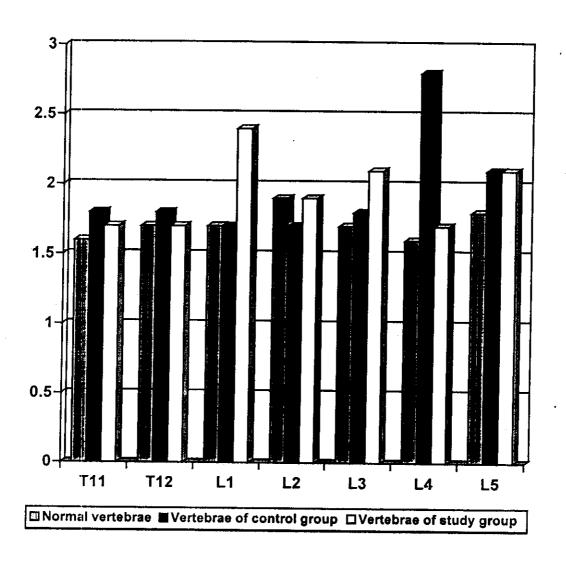


Figure (1-3): Compression values of normal vertebrae, vertebrae of control group and vertebrae of study group.

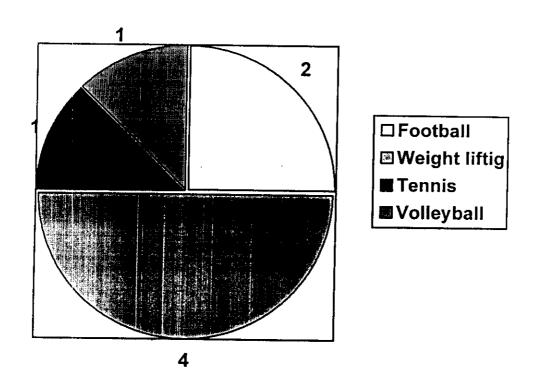


Figure (2): Distribution of vertebral deformities in different sports.

Fig. (3) Shows fracture of pars interarticularis and spondylolisthesis.

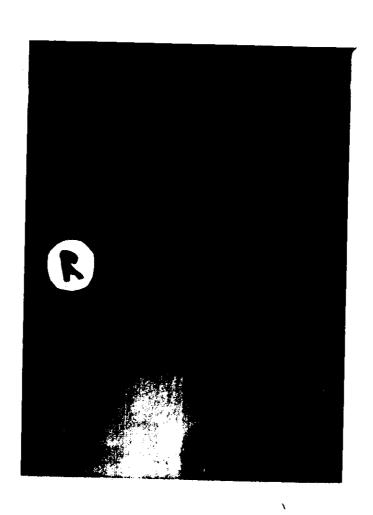


Fig. (4) Shows fracture of pars interarticularis and spondylolisthesis.

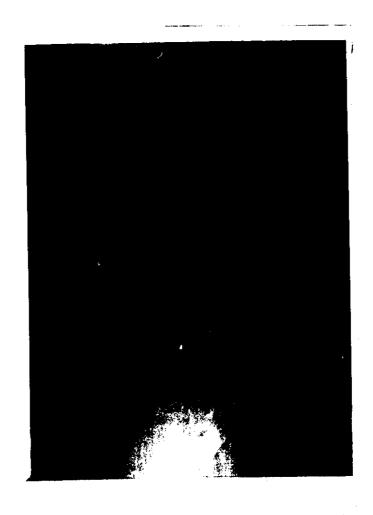


Fig. (5) Shows loss of lumbar lordosis.

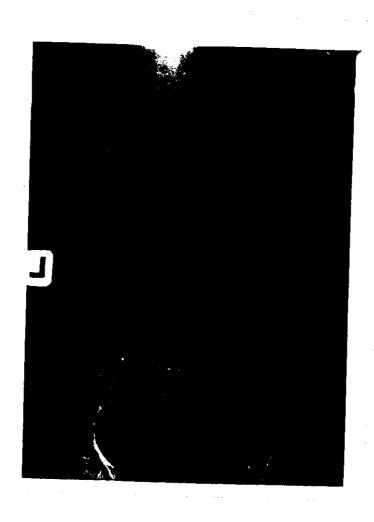


Fig. (6) Shows scolosis. Scolosis