Contents

Contents

raniowicagements	
Abstract	ž v
Chapter (I): Introduction	1
Chapter (II): Steady flow about a rotating sphere in a	,*
viscoelastic fluid	11
2.1 Formulation of the problem	11
2.1.1 Constitutive equation	12
2.1.2 The Continuity and momentum equations	13
2.1.3 The boundary conditions	19
2.2 Method of solution	20
2.2.1 Zero-order approximation	21
2.2.2 First-order approximation	22
2.2.3 Second-order approximation	22
2.2.4 Third-order approximation	23
2.3 Solutions of the successive set of equations	23
2.3.1 Zero-order approximation	23
2.3.2 First-order approximation	24
2.3.3 Second-order approximation	26
2.3.4Third-order approximation	29
Chapter (III): Steady flow about a rotating and translating	· ·
sphere in a viscoelastic fluid	34
3.1 Formulation of the problem	34
3.2 The boundary conditions	35
3.3 Solutions of the successive set of equations	35
3.3.1 Zero-order approximation	35
3.3.2 First-order approximation	36

39

3.3.3 Second-order approximation

Chapter (IV): Flow analysis	43
I-Rotational flow	44
4.1 Zero-order approximation	44
4.2 First-order approximation	46
4.3 Second-order approximation	47
4.4 Third-order approximation	52
4.5 The streamlines due to the whole flow	56
4.6 Determination of the torque acting	
on the rotating sphere	59
II- Combined rotational and translational flows	62
4.7 Zero-order approximation	62
4.8 First-order approximation	64
4.9 Second-order approximation	67
4.10 Determination of the torque acting	
on the rotating sphere	73
4.11 The drag on the sphere	75
Chapter (V): Results	79
References	87
Arabic Abstract	