CONTENTS

AIM OF THE WORK	1
CHAPTER 1	
GENERAL INTROPUCTION	
AMADINE TATIOTOOT 70%	
1. CORROSION IN PETROLEUM PROCESSING	2
1.1. Factors Affecting Corrosion	4
1.1.1. Type of metal	4
1.1.2. Liquid composition	5
1.1.3. Temperature	6
1.1.4. Fluid velocity	6
	7
1.2. Methods of Corrosion Reduction	-
1.2.1. Desalting	7
1.2.2. Neutralization	8
1.2.3. Inhibitor addition	8
Thirth was a Commonia Thirthitory	10
1.3. Types of Organic Inhibitors	11
1.3.1. Aliphatic fatty acid derivatives	
1.3.2. Imidazolines and their derivatives	12
1.3.3. Quaternary ammonium salts	13
1.3.4. Rosin derivatives	14
1.3.5. Other types of inhibitors ··· ···	14

Contents (cont.)	Page
1.4. Theoretical Consideration of the Used	
Inhibitors	15
1.4.1. Kinetics and mechanism of epoxidation reaction	16
1.4.2. Sensitivity of epoxide ring to various	
reagents	18
1.4.3. Structure, basicity and reactivity of epoxides	18
1.4.4. Interaction of amines with epoxy compounds	19
CHAPTER 2	
2. CORROSION AND INHIBITION MECHANISMS	22
2.1. Corrosion Mechanism	. 22
2.2. Inhibition Mechanism	. 24
CHAPTER 3	
3. FACTORS AFFECTING INHIBITOR EFFICIENCY	. 31
3.1. Type of the Metal to be Inhibited	. 31
3.2. Type of the Corrosive Medium and Hydrogen	
Ion Concentration	. 32
3.3. Temperature of the Corrosive Medium	. 33
3.4. Structure of the Inhibitor Molecule	. 34
3.5. Electron Density on the Functioning Group	
or atom ··· ··· ···	. 40

Contents (cont.)

					rage
CHAPTER 4					
4. EXPERIMENTAL					
4.1. Preparation of Inhibitors	- · ·	• • •	• • •		42
4.1.1. Materials	• • •	• • •	• • •	• • •	42
4.1.2. Techniques	: 5 • • •		• • •	• • •	43
4.1.2.1. In-situ epoxidation	• • •		• • •	• • •	43
4.1.2.2. Determination of epoxide	conte	nt	• • •		45
4.2. Evaluation of Inhibitors	• • •	• • •	• • •	• • •	47
4.2.1. Methods of evaluation	• • •	•••		• • •	47
4.2.1.1. Indirect methods	• • •	• • •	• • •	***	47
4.2.1.2. Direct methods	• • •	•••	• • •		47
4.2.2. Design of apparatus		• • •	• • •	• • •	48
4.2.2.1. Static system (Liquid pha				• • •	49
4.2.2.2. Dynamic system (Gas phase					5 1
4.2.3. Material and sample prepare				• • •	5 3
4.2.4. Weight loss measurements		• • •		• .4 •	54
4.2.4.1. In the liquid phase		•	•		54
4.2.4.2. In the gas phase					54
4.2.4.2. III the Bab brabe	•••	.	• • •		
CHAPTER 5					
5. RESULTS AND DISCUSSION	• • •	a • •	• • •		57
5.1. Results and Discussion of Ind	hibito	r Prep	arati	on	57

Contents (cont.)	Page
5.1.1. Thermal stability of epoxidized linseed oil	57
5.1.2. Reactions of aromatic amines with epoxidized	
linsed oil	. 57
5.1.3. Effect of basicity and Hammett constants of	
amines on the rate of their reactions with	
epoxy compounds	. 62
5.1.4. Nuclear magnetic resonance of amines and	
epoxidized compounds	. 65
5.2. Inhibitor Evaluation	. 69
5.2.1. Results of corrosion inhibition of Carbon Steel	
using epoxidized linseed oil and epoxidized	
oleic acid modified with aliphatic amines	. 69
5.2.1.1. In the liquid phase · · · · · · · · · · · · · · · · · · ·	. 69
5.2.1.2. In the gas phase	. 72
5.2.1.3. Relation between percent inhibition and	
Taft constant	. 76
5.2.1.4. Langmuir adsorption isotherms	78
5.2.2. Discussion	. 83
5.2.2.1. In the liquid phase · · · · · · · · · · · · · · · · · · ·	83
7,64,64,84,84,84,84,84,84,84,84,84,84,84,84,84	. 88
5.2.2.2. In the gas phase	, • 00
5.2.2.3. Relation between percent inhibition and	. 90
Taft constant	. 90
5.2.2.4. Langmuir adsorption isotherms	,, 50
5.2.3. Results of corrosion inhibition of Carbon	
Steel using epoxidized linseed oil and epoxidized oleic acid modified with	
aromatic amines	92

Contents	(cont.)				Page
5.2.3.1.	In the liquid phase	•••	•••	• • •	92
5.2.3.2.	In the gas phase	• • •		•••	97
5.2.3.3.	Relation between percent inhi	bition	and		
	Hammett constants		•••	•••	102
5.2.3.4.	Relation between basicity and	percen	t		
	inhibition		• • •	• • •	105
5.2.3.5.	Nuclear magnetic resonance en	oxy gro	up shi	ift	
	and inhibitor efficiency				105
5.2.3.6.	Langmuir adsorption isotherms	š •••	• • •	•••	109
5.2.4. D	iscussion	• • •	•••	• • •	114
	In the liquid phase			•••	115
	In the gas phase				118
	Relation between percent inh			٠	
J#=01470	Hammett constants	• • •	• • •	• • •	120
5.2.4.4	Relation between basicity and	d percer	nt		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	inhibition	• • •	• • •	• • •	121
5.2.4.5	Nuclear magnetic resonance e	poz y gr o	oup sh	ift	
	and inhibitor efficiency				122
5.2.4.6.	Langmuir adsorption isotherm	S		• • •	124
5.2.5. (Comparison between aliphatic a	nd arom	atic		
	amine derivatives of M.E.L.O.				125
	. In the liquid phase	• • •	• • •	• • •	125
	. In the gas phase	• • •	• • •	•••	126
	Results of corrosion inhibition		rbon S	Steel	
	using commercial inhibitors		•••	• • •	128

Contents (cont.)

					Page
5.2.6.1. In the liquid phase	• • •	• • •	• • •	• • •	128
5.2.6.2. In the gas phase	• • •		• • •	• • •	128
5.2.7. Discussion	• • •	•••	• • •	•••	132
5.2.7.1. In the liquid phase	• • •	• • •	•••	•••	132
5.2.7.2. In the gas phase	• • •	•••	• • •	•••	133
General Remarks and Conc	lusions		• • •	• • •	135
Summary	• • •	• • •	• • •	• • •	137
References	• • •	• # #	• • •	•••	143
Arabic Summary					

AIM OF THE WORK

The aim of the present investigation was to prepare and evaluate organic compounds for their protective action on carbon steel, under conditions which nearly simulate those prevailing in petroleum industry. The criteria of choosing these compounds were its availability in local cheap sources, thermal stability, chemical stability both in acidic and basic media, and stability against salts specially those encountered in water associated with crude oils.

The mechanism of corrosion inhibition by organic compounds is still subject to contraversy. It was, therefore, desirable to understand the relation between inhibition and structure of the prepared compounds, and to support or dispute the different theories in this respect.

With these targets in view, fourteen compounds were thus prepared by modifying epoxidized linseed oil and epoxidized oleic acid with aliphatic amines of different chain lengths, aniline and three of its para-substituents.