TABLE OF CONTENTS

		Page No.
SUMMARY		χi
AIM OF THE	WORK	xiv
INTRODUCT	ION	1
CHAPTER 1:	LITERATURE REVIEW	3
1.1	Lead Scrape.	3
1.1.1	Method of Recovery of Lead from Lead Scrap.	4
1.1.1.1	The pyrometallurgical method.	4
1.1.1.2	The hydrometallurgical method.	15
1.2	Dust Bearing Lead.	20
1.2.1	Dust formation.	20
1.2.2	Dust collection technology.	20
1.22.1	Classification of dust collection techniques.	21
1.2.2.2	Dust chambers and flues.	24
1.2.2.3	Inertial dust collectors.	25
1.2.2.4	Wet dust collection.	28
1.2.2.5	Choice of dust collection equipment.	34
1.2.2.6	Dust collection in the manufacture of heavy non	35
	ferrous metals.	
1.2.3	Qualitative and quantitative estimation of emission level of a typical lead smelter compared to the standard level as specified in the law 4 / 1994.	37
1.2.4 metal.	The treatment of flue dust to recover lead	40
1.3	Dross Bearing Lead.	46
CHAPTER 2:	EXPERIMENTAL	49
2.1	Materials	49

			Page No.
	2.11	Dust.	49
	2.1.2	Slag.	49
	2.1.3	Design of dust collection devices.	53
	2.1.4	The Gas Cleaning Device	53
	2.1. 5	Chemicals.	55
	2.1.6	Water and Gases.	57
	2.2	Description of the used method.	57
	2.3	Designing of mathematical model of the experimental work.	59
	2.4	Setting up the experimental test rigs.	64
	2.4	Measurement of physico-chemical properties of the	68
		second materials "dust & slag" and end products.	
	2.5.1	Particle size analysis.	6 9
	2.5.2	Density.	69
	2.5.3	Measurement of the porosity.	69
	2.5.4	Chemical analysis.	69
CHAP	PTER 3:	RESULTS	73
	3.1	The Structure of Lead Smelter industry in Egypt.	7 3
	3.2	Types of lead smelting furnuces.	73
	3.2.1	Specific variants of the rotary furnaces.	73
	3.2.2	Specific variants of kettle furnaces.	75
	3.3	The overall turnover of Lead smelters	75
	3.4	The available production capacity as related to the	77
		specific variants of lead smelters	
	3.5	Particle size analysis.	85
	3. 6	Dust collection	96
	3.7	Conversion of lead dust to lead carbonate.	109
	3.8	Optimum conditions pelletization recovery of dust	115

		Page No.
	using carbon reduction.	
3.9	Recovery of metal lead dust using hydrogen gas	123
	reduction.	
3.10	Processing the results of the experiments	129
3.10.1.	Testing the adequacy of the model	130
3.10.2	Determination of the optimum conditions from	131
	experimental results.	
3.11	Recovery of lead from slag.	139
CHAPTER4:	DISCUSSION	142
4.1	Dust collection.	142
4.2	Carbonation of lead sulfate and lead oxides.	146
4.3	Pelletization of lead dust before reduction.	152
4.4	Thermal reduction of lead carbonate.	155
4.5	Recovery of lead from slag.	159
PROCESS E	CONOMICS	160
CONCLUSIO	ON	162
REFERENCE	ES .	164
SUMMERY I	IN ARABIC	177

7

LIST OF FIGURES

		Page No.
Fig. 1	Flow diagram of lead recovery process.	11
Fig. 2	Gives a schematic diagram of a dust chamber.	25
Fig. 3	The dust chamber with horizontal shelves.	25
Fig. 4	The dust chamber with horizontal shelves.	26
Fig. 5	Baffler type dust collector.	27
Fig. 6	Inertial dust trap with deflection of gas flow.	27
Fig. 7	Schematic diagram illustrating the action of a louvre-type dust collector.	28
Fig. 8	Schematic diagram of BTH louvre-type dust collector.	28
Fig. 9	Wetting on application of a solid surface.	30
Fig. 10	Schematic diagram of a single-shelf foam apparatus.	32
Fig. 11	Rotoclone H, wet dust collector (schematic diagram illustrating gas flow).	34
Fig. 12	Self induced spray scrubber.	34
Fig. 13	Schematic diagram of the industrial facility to reduce lead past using a short rotary furnace.	51
Fig. 14	The sites of sampling for measuring emissions.	52
Fig. 15	Schematic diagram of the tested hot gas cleaning device.	54
Fig. 16	Flowsheet of the steps followed to achieve the cost effective abatement and recovery of fugitive emission for clean recovery of lead from lead smelters.	58
Fig. 17	X- Ray microprobe of slag fraction $-1000+400$ μm .	90
Fia. 18	X-Ray microprobe of slag fraction +400-63µm.	90

		No.
Fig. 19	X- Ray microprobe of slag fraction –63 μm.	91
Fig. 20	Effect of compression force on the apparent density of filtration media made of different materials.	97
Fig. 21	The total porosity of the filtration pad as affected by compression force.	99
Fig. 22	The porosity distribution of the filtration materials.	100
Fig. 23	Effect of gas pressure on the permeability of the filtration media.	101
Fig. 24	The cleaning efficiency of the assembly as a function of solid particle diameter.	102
Fig. 25	Effect of velocity of hot flue gas on the cleaning efficiency of the assembly.	103
Fig. 26	Effect of diameter/length ratio of the assembly on its cleaning efficiency.	105
Fig. 27	Effect of filtration pad on cleaning efficiency of the assembly.	106
Fig. 28	Effect of flue gas velocity on the exit gas temperature (inlet gas T= 450°C, particle diameter >10 um <63 um).	107
Fig. 29	Temperature of the exit flue gas as calculated theoretically and experimentally measured (conditions as given in Fig. 26).	108
Fig. 30	The extent of solubility of synthetic lead oxide (PbO) and lead sulfate (PbO ₄) in 1M NH ₄ COOCH ₃ at different temperatures.	110
Fig. 31	The activation energy value of the dissolution criterion.	111
Fig. 32	Effect of temperature on the extent of carbonation at (1:1 Stichiometric, 2hr., and stirring150rpm).	112
Fig. 33	Effect of stichiometric ratio of Na ₂ CO ₃ on the extent of carbonation for 2hr., at room	113

		No.
	temperature (stirring150rpm).	
Fig. 34	Effect of time on the extent of carbonation at (1:1 stichiometric ratio, room temperature, and stirring150rpm	114
Fig. 35	Uncontrolled TSP level (µg/m³) as affected by smelting temperature using powder and palletized dust.	116
Fig. 36	Controlled TSP emission level of powder and palletized dust as a function of smelting temperature.	117
Fig. 37	The mechanical strength of palletized dust as affected by molasses content.	118
Fig. 38	The recovery percentage of metal lead as a function of smelting temperature.	119
Fig. 39	Effect of pellet diameter on the lead recovery by smelting at 1000°C & 1050°C.	121
Fig. 40	The Arrhenius plot of the thermal recovery of metal lead from the prepared pellets.	122
Fig. 41	The recovery percentage of metal lead as a function of the smelting temperature at constant time (15min.).	124
Fig. 42	The Arrhenius plot of the thermal recovery of metal lead by hydrogen gas at constant time (15min.).	125
Fig. 43	The lead recovery as the function of time at the constant smelting temperature (1000 °C).	126
Fig. 44	The recovery percentage of metal lead by hydrogen gas reduction as a function of smelting temperature constant time (30min.).	127
Fig. 45	The Arrhenius plot of the thermal recovery of metal lead by hydrogen gas at constant time (30min.).	128
Fig. 46	The standard diagram of solid / liquid ratio percentage from experimental design.	137

		Page No.
Fig. 47	The standard diagram of concentration of oxidant from experimental design.	137
Fig. 48	The standard diagram of time from experimental design.	138
Fig. 49	The standard diagram of temperature from experimental design.	138
Fig. 50	The solubility of lead chloride as the function of temperature.	140
Fig. 51	Hydrometallurgical recovery % of metallic lead by leaching the slag having different particle diameter.	140
Fig. 52	Schematic diagram of the hot flue gas stricking the stud as a model.	143