SUMMARY

The thesis entitled: "Production of Some Long-Lived Fission-Product Radionuclides" comprises three chapters; introduction, experimental, and results and discussion.

Chapter 1, introduction, includes brief accounts on nuclear fission, chemistry, radiochemistry and nuclear chemistry of uranium, Periodic Table and ²³⁵U-fission products, chemical processing for separation of some ²³⁵U-fission products (including radioiodine, radioruthenium, radiocesium, radiomolybdenum, and radio-zirconium and –niobium), some beneficial applications of ²³⁵U-fission products (including ¹³⁷Cs/^{137m}Ba and ⁹⁹Mo/^{99m}Tc radioisotope generators, sealed sources, nuclear batteries, and miscellaneous applications).

Chapter 2, experimental, includes description of the chemicals and solutions as well as specifications of the equipments used. It includes also description of processes related to the target preparation, irradiation, and dissolution, preparation of 6-tungstocerate(IV), 6-WCe, gel matrix, separation methods of radioiodine, radioruthenium, radiocesium, radiomolybdenum, and radio-zirconium and –niobium from the aged and/or hot irradiated natural-abundance UO₃ targets, some beneficial applications of ²³⁵U-fission products (including ¹³⁷Cs/^{137m}Ba and ⁹⁹Mo/^{99m}Tc radioisotope generators as well as ⁹⁹Mo/^{99m}Tc-¹³⁷Cs/^{137m}Ba dual radioisotope generator) and quality control investigations of the product radionuclides (including elution profiles of generator-produced radionuclides, separation and elution yields, recovery yield, radionuclidic purity, radiochemical purity, chemical purity, and pH-value).

Chapter 3, results and discussion. The uranium targets, consisted of 4×0.025 g of natural-abundance UO₃, were irradiated in ETRR-2 Research Reactor-Egypt for 4 h at a thermal neutron flux of 1×10^{14}

 $n.cm^{-2}.s^{-1}$. Thereafter, they were cooled for 10 d (hot sample) or for ~ 2.5 y (aged sample) before alkali/acid dissolution process to obtain hot and aged fission-product (FP) feeding solutions, respectively. These solutions were submitted to gamma-ray spectrometric analysis. The obtained spectra were identified and quantified according to the characteristic gamma-ray photopeaks of the corresponding radionuclides. The feeding FP solutions were radiochemically processed by sequential distillation from nitric acid media of controlled chemical composition for separation of volatile species (radioiodine and radioruthenium) and in-situ precipitation reactions of e.g., $Al(OH)_3$ for separation radiomolybdenum and/or radiocesium. Redissolution of the formed matrix precipitated from the hot FP solution followed by suitable chemical processing reactions led to separation of the 95Zr/95Nb couple. All the processing steps were followed and assessed by radiometric methods. The validity of the corresponding separation procedure was controlled by carrying out the respective quality control investigations for the product radionuclide. The obtained data were discussed and interpreted. Peaceful uses of the separated FP radionuclides were illustrated in preparation of ¹³⁷Cs/^{137m}Ba and ⁹⁹Mo/^{99m}Tc radioisotope generators as well as ⁹⁹Mo/^{99m}Tc-¹³⁷Cs/^{137m}Ba dual radioisotope generator.

Iodine-131 ($T_{1/2}$ = 8.04 d, Y_f = 2.89 %) was separated from the hot FP solution by distillation form 20 % HNO₃ containing 0.5 ml 30 % H₂O₂, as an oxidant, via boiling for 4 h. The distilled off radioiodine was recovered in ice-cooled 15 ml 0.1 M NaOH-0.01 M Na₂S₂O₃ solution after passing through an acid trap containing 15 ml 3 M H₂SO₄. The separation yield of ¹³¹I was \geq 99.99 % with a recovery yield of 82.7 %. The corresponding radionuclidic purity was found to be 65.60 % ¹³¹I (determined immediately after recovery) with the presence of 34.40 %

 132 I, as an isotopic radiocontaminant, and $\geq 99.99 \% ^{131}$ I (determined after ~ 40 -h decay time) due to decay of 132 I with $T_{1/2} = 2.28$ h. Radiochemical purity of the 131 I product solution was found to be 99.4 % (onto Whatman No. 1 paper chromatogram) and 99.2 % (onto thin layer chromatogram) as I⁻. pH-value of the product solution was 12.8 containing radioactivity and radioactive concentration of 11.7 MBq 131 I and 0.8 MBq 131 I /ml, respectively. However the same procedure was followed for the separation of 129 I ($T_{1/2} = 1.57 \times 10^7$ y, $Y_f = 0.511$ %) from the aged FP solution, it was not detected in the product solution.

Ruthenium-106 ($T_{1/2} = 1.02 \text{ y}, Y_f = 0.402 \%$) was separated from the aged FP solution, after separation of ¹²⁹I, by distillation from 40 % HNO₃ containing 0.01 g KMnO₄, as an oxidant, via boiling for 2.5 h. The distilled off radioruthenium was recovered in ice-cooled 15 ml 0.1 M NaOH solution with a separation yield of 91.8 % 106Ru (no more 106Ru was distilled off after boiling for further 0.5 h), and a recovery yield of 74.3 %. The product solution had a radionuclidic purity of \geq 99.99 % 106 Ru, pH-value of 12.3, radioactivity and radioactive concentration of \sim 13.9 kBq 106 Ru and ~ 0.9 kBq 106 Ru/ml, respectively. On the other hand, 103 Ru ($T_{I/2} = 39.27$ d, $Y_f = 3.03$ %) was separated from the hot FP solution, after separation of 131 I, by distillation from 40 % HNO₃-10 % H₂SO₄ containing 0.01 g KMnO₄, as an oxidant, via boiling for 1 h. The distilled off radioruthenium was recovered in ice-cooled 15 ml 0.1 M NaOH solution with a separation yield of \geq 99.99 % 103 Ru and a recovery yield of 77.5 %. The product solution had a radionuclidic purity of 98.49 % 103 Ru (with the presence of 1.51 % of 106 Ru/ 106 Rh radioactive couple as an isotopic radiocontaminant), pH-value of 12.5, radioactivity and radioactivity concentration of 5.1 MBq 103Ru and 0.3 MBq 103Ru /ml, respectively.

Cesium-137 ($T_{1/2} = 30.07 \text{ y}, Y_f = 6.19 \%$) was separated from the aged FP solution, after separation of ¹⁰⁶Ru, by addition of NaOH solution to pH-value of 9.5 to precipitate the Al(OH)₃-MnO₂-Na₂U₂O₇ matrix which selectively retained the remaining FP radionuclides leaving, mainly, ¹³⁷Cs in the supernatant solution with a seaparation yield (or a recovery yield) of 97.3 %. Radionuclidic purity of the product solution was found to be ~ 99.75 % 137 Cs with the presence of ~ 0.25 % 134 Cs as an isotopic radiocontaminant and $\sim 1.4 \times 10^{-3}$ % 152,155 Eu as non-isotopic radiocontaminants separated and identified by 6-WCe chromatographic column operations. Radioactivity and specific activity of the final ¹³⁷Cs product loaded onto 1.5 g of 6-WCe matrix were found to be ~ 54.4 kBq ^{137}Cs and ~ 36.3 kBq ^{137}Cs /g, respectively. Cesium-137 was also separated from the hot FP solution, after separation of ¹⁰³Ru, by raising pH-value of the solution to 9.5 to precipitate the Al(OH)₃-MnO₂-Na₂U₂O₇ matrix as mentioned above. Thereafter, HNO3 was added to the supernatant solution (to obtain a FP solution in 1 M HNO₃) followed by addition of Ba carrier to precipitate BaSO₄ from the solution. Finally, scavenging of radiocesium as a ferrocyanide complex was carried out by addition of Na₄[Fe(CN)₆] and NiCl₂ solutions and raising the solution pHvalue to 10 with NaOH solution to precipitate Ni₂[Fe(CN)₆]. The separation yield of 137 Cs was ≥ 99.99 % with a recovery yield of 87.7 %. Radionuclidic purity of ¹³⁷Cs in the ferrocyanide complex was found to be 43.25 % with the presence of 0.26 % $^{134}\mathrm{Cs}$ and 50.77 % $^{136}\mathrm{Cs}$ as and 5.72 % 132I as non-isotopic isotopic radiocontaminants, radiocontaminant. The radioactivity and specific activity of the ¹³⁷Cs product in the obtained ferrocyanide complex was found to be 51.9 kBq and 129.8 kBq/g, respectively.

All the aforementioned dissolution and chemical processing steps of the hot UO₃ targets were basic steps for establishing a procedure for

separation of 99 Mo ($T_{1/2} = 2.75$ d, $Y_f = 6.11$ %) from the hot FP solution. The final supernatant solution (66.8 ml of 1.7 M Na₂SO₄-2.3 M NaNO₃), obtained after precipitation of nickel ferrocyanide, was found to contain the radioactivity of 99 Mo. The separation yield of 99 Mo was found to be 97.5 % with a recovery yield of 66.1 %. The corresponding radionuclidic purity was found to be 99.05 % 99 Mo with the presence of 0.91 % 132 I and 0.04 % 95 Zr/ 95 Nb as radiocontaminants. The 99 Mo product solution had pH-value of 10, radioactivity and radioactive concentration of 12 MBq 99 Mo and 0.2 MBq 99 Mo /ml, respectively.

Zirconium-95 ($T_{1/2} = 64.02 \text{ d}$, $Y_f = 6.5 \%$) and niobium-95 ($T_{1/2} =$ 34.97 d, $Y_f = 6.5$ %) were separated from the Al(OH)₃-MnO₂-Na₂U₂O₇ matrix precipitated from the hot FP solution at pH9.5 (after a cooling time of 70 d). The matrix was dissolved in 30 ml 1 M H₂SO₄. Then, BaCl₂ was added to precipitate BaSO₄ from the solution. Purification of the separated 95Zr/95Nb couple (which remained in the supernatant solution) from traces of ¹³⁷Cs radiocontaminat was carried out by raising the solution pH-value to 9.5, to precipitate Al(OH)3, which retained the ⁹⁵Zr/⁹⁵Nb couple leaving ¹³⁷Cs in the supernatant. Finally, Al(OH)₃ precipitate containing pure 95Zr/95Nb copule was dissolved in 30 ml 1 M HNO₃ solution. The separation yield of the 95 Zr/ 95 Nb couple was ≥ 99.99 % with a recovery yield of 95.3 %. Radionuclidic purity of the 95Zr/95Nb couple was found to be 99.96 % with the presence of 0.02 % 60 Co, 0.005% 65 Zn, 0.005 % 125 Sb, and 0.01 % 144 Ce as radiocontaminants. Radioactivity and radioactive concentration were found to be 4.6 MBq and 0.15 MBq/ml for 95Zr and 10.1 MBq and 0.34 MBq/ml for 95Nb, respectively.

¹³⁷Cs recovered from the aged FP solution and ⁹⁹Mo recovered from the hot FP solution were loaded onto 6-WCe and chromatographic alumina columns for preparation of radioisotope generator systems from

which the generated $^{137\text{m}}$ Ba ($T_{1/2} = 2.55$ min) and $^{99\text{m}}$ Tc ($T_{1/2} = 6.01$ h) daughter radionuclides were eluted, respectively. On the other hand, the mixture of 99 Mo and 137 Cs radionuclides recovered from the hot FP solution was loaded onto 6-WCe chromatographic column for preparation of a dual radioisotope generator from which $^{99\text{m}}$ Tc and $^{137\text{m}}$ Ba were sequentially eluted. The elution performance of the generated daughter radionuclides from the radioisotope generator systems was controlled as a function of some preparational and operational parameters such as column matrix, chemical composition of the eluent, flow rate, elution frequency, generator age, etc.

For 137 Cs/ 137m Ba radioisotope generator based on 6-WCe column, the 137m Ba eluates with 0.9 % NaCl-0.1 M HCl eluent had higher elution yields and radionuclidic purity than with 0.1 M NH₄Cl-0.1 M HCl eluent. The elution profiles of 137m Ba had two components; maximum elution peak and continuous elution plateau. The generator has been repeatedly eluted for 311 days by passing 4810 ml of the saline eluent (10 ml × 481 elution operations) at a flow rate of 3.0 ml/min and 25°C. 137m Ba eluates of reproducible elution yields (from 63.9 ± 1.0 to 68.9 ± 0.2 % at the maximum elution peaks, obtained in the second ml of the eluate, and from 41.2 ± 0.5 to 44.8 ± 1.0 % for 1 ml eluate of the continuous elution regions) and a high radionuclidic purity of ≥ 99.99 % were obtained. The eluates had pH-value of 1 with undetected W and Ce as chemical contaminants from the column matrix.

For ⁹⁹Mo/^{99m}Tc radioisotope generator based on alumina column, 20 elution operations were carried out, over a period of 26 days. In each elution operation, 10 ml 0.9 % NaCl solution, as eluent, was passed through the column bed at a flow rate of 0.5 ml/min (except for the 2nd, 3rd, and 4th elutions which were conducted at flow rates 1.0, 2.0, and 3.0 ml/min, respectively) and 25 °C. ^{99m}Tc eluates with high elution yield

(88.4 \pm 0.4 %), radionuclidic purity (\geq 99.99 %), radiochemical purity (98.6-99.0 % as $^{99m}TcO_4$), and low Al contamination level (1-3 µg/ml) where obtained at flow rate 0.5 ml /min. pH-value of the ^{99m}Tc eluates ranged from 6.2-6.5.

For the ⁹⁹Mo/^{99m}Tc-¹³⁷Cs/^{137m}Ba dual generator based on 6-WCe column, ^{99m}Tc was firstly eluted for 14 times over a period of 18 days with passing 10 ml 0.9 % NaCl solution, in each elution operation, at a flow rate of 0.5 ml/min (except for the 2nd, 3rd, and 4th elutions which were conducted at flow rates 1.0, 2.0, and 3.0 ml/min, respectively) and 25°C. 99m Tc eluates with elution yield of 76.9 ± 0.3 %, radionuclidic purity of ≥ 99.99 %, radiochemical purity of 97.3-98.1 %, and low W and Ce contamination levels (1.5-2.7 and 0 µg/ml, respectively) were obtained at flow rate 0.5 ml/min. pH-value of the 99mTc eluates ranged from 3.2-4.5. After complete decay of ⁹⁹Mo (~ 90 d from loading the column with the mixture of 99Mo and 137Cs radionuclides), 137mBa was eluted for 250 days by passing 3300 ml of 0.9 % NaCl-0.1 M HCl eluent (10 ml × 330 elution operations) at a flow rate of 3.0 ml/min and 25°C. ^{137m}Ba eluates of reproducible elution yields (from 62.4±2.1 to 68.2±2.3 % at the maximum elution peaks, obtained in the second ml of the eluate, and from 41.4±1.1 to 44.3±1.1 % for 1 ml eluate of the continuous elution regions) with radionuclidic purity of \geq 99.99 %, undetected W and Ce contamination levels, and pH-value of 1 were obtained.