CHAPTER 0

DEFINITIONS TERMINOLOGY AND BASIC RESULTS

§ 0.1 Modules

Simple, Indecomposable, Faithful

Definition 0.1.1.A right R-module M is called simple (or Irreducible) iff i) MR≠0
ii) M has no nonzero proper R-submodules.

Definition 0.1.2. A right R-module M is called decomposable iff $M = \Sigma^{\oplus} M_i$ where M_i are nonzero proper R-submodules. Otherwise M is called indecomposable.

Definition 0.1.3. A submodule N_R of M_R is called an essential submodule iff $N_R \cap M^1_R \neq \{0\}$ for every nonzero submodule M^1 of M in this case.

Definition 0.1.4. A module M_R is called faithful if it has a zero annihilator, i.e. $Ann_R(M) = \{x \in R \mid Mx = 0\} = \{0\}$

Definition 0.1.5. A module P_R is called projective iff one of the following conditions holds

- i) For every epimorphism $\pi: B_R \to A_R$ and homomorphism $\Phi: P_R \to A_R$, then there is a homomorphism $\Psi: P_R \to B_R$ such that $\pi \circ \Psi = \Phi$.
- ii) Every epimorphism $\pi: B_R \to P_R$ is direct i.e. there exists a monomorphism $\theta: P \to B$ such that $\pi \circ \theta = \text{identity homomorphism}$.
- iii) If P_R is a homomorphic image of a module B_R then P_R is a direct summand of B.

Definition 0.1.6. A module M_R is called flat iff whenever $K: A_R \to B_R$ is mono, then $K \otimes 1: A \otimes_R M \to B \otimes_R M$ is also monomorphism.

Definition 0.1.7. A module I_R is called injective iff one of the following conditions holds

- i) \forall monomorphism $K:A_R \to B_R$ and homomorphism $\Phi:A \to I$, then there is a homomorphism $\Psi:B_R \to I_R$ such that $\Psi\circ K = \Phi$.
- ii) Every monomorphism $K:I_R \to B_R$ is direct i.e. there is an epimorphism $\pi:B_R \to I_R$ such that $\pi \circ K = \text{identity}$
- iii) if I_R is imbedded in B_R then I_R is a direct summand of B_R
- iv) I_R is a direct summand of a character module of a free module.

§ 0.2 Simple Rings, Central Simple Algebras, Primitive Rings, Prime Ring and Semi Prime Rings.

Definition 0.2.1. A ring R is called simple if it is simple as R-module i.e. $R^2 \neq 0$, and R has no proper nonzero ideals.

Definition 0.2.2. An algebra A_F (over a field F) is called central if the center of A coincides with the field F.

Definition 0.2.3. A ring R is called right primitive if it has a zero right primitive ideal $I = (\rho:R) = \{x \in R \mid Rx \subseteq \rho\}$, where ρ is a maximal right ideal in R. This is equivalent to R has simple irreducible $(MR \neq 0, M \text{ has no R-submodule})$ faithful $(Ann_R (M) = \{x \in R \mid Mx = 0\} = 0)$ R-module M.

It is clear that if R is a simple ring with 1 then R is primitive.

Definition 0.2.4.An ideal P is called prime if for any two ideals A, B \triangle R such that AB \subset P implies A \subset P or B \subset P.

Definition 0.2.5. A ring is called prime if it has a zero prime ideal P. This is equivalent to aRb = 0 iff a = 0 or b = 0 where a,b ϵ R.

Any primitive ideal (ring) is prime one.

Definition 0.2.6. \cap all right primitive ideals $= \cap$ all left primitive ideals $= \cap$ all maximal right ideals $= \cap$ all maximal left ideals $= \cap$ Annihilators of simple right modules $= \cap$ Annihilators of simple left R-modules is called Jacobson radical of R and denoted by J(R).

Definition 0.2.7. \cap all prime ideals of R is called the prime (Baer) radical of R and is denoted by P(R). P(R) is a nil ideal

Definition 0.2.8. A ring is called semi primitive iff J(R) = 0 and semiprime if P(R)=0

R is semiprime iff R has no nonzero (left, right or two-sided) nilpotent ideal.

§ 0.3 Chain Conditions

Definition 0.3.1. A module M is said to be Noetherian iff every ascending chain of submodules M_i of M is ultimately constant i.e, if there is a positive number n such that $M_n = M_i$ for all $i \ge n$.

Proposition 0.3.2. Given a module M, the following conditions are equivalent:

i) M is Noetherian ii) All submodules of M are finitely generated iii) All finitely generated submodules of M are Noetherian.

Definition 0.3.3.A module M is said to be Artinian iff every descending chain of submodules M_i of M is ultimately constant

Definition 0.3.4. The ring R is right (left) Noetherian (Artinian) if $R_R(R)$ is Noetherian (Artinian)

Definition 0.3.5. The left annihilator of a subset S of a ring R is the set: $Ann_{\ell}(S) = \{r \in R \mid rS = 0\}$. Similarly we define $Ann_{r}(S)$.

It is evident that Ann_e(S) and Ann_e(S) are left and right ideals respectively.

Definition 0.3.6. A ring R is said to satisfy Acc (Ann_t) if every ascending chain of left annihilators of subsets of R terminates

Definition 0.3.7. A ring R is said to satisfy $Acc_t \oplus$ if R does not contain infinite direct sum of left ideals of R

Definition 0.3.8. A ring R is left Goldie if R satisfies $Acc_t(Ann)$ and $Acc_t \oplus$.

Any Noetherian ring is a Goldie ring. The ring $E[x_1, x_2, ...]$ of polynomials in several indeterminates over any field is Goldie but not Noetherian

§ 0.4 Asano order, Hereditary Rings and Dedekind Domains.

Definition 0.4.1. A ring Q is called a quotient ring if every regular element of Q is a unit (invertible), for example i) Every right (or left) Artinian ring is quotient

ring, ii) Every von-Neumann regular ring is a quotient ring and iii) Any algebraic algebra over a field is a quotient algebra.

Definition 0.4.2. Given a quotient ring Q, a subring R not necessarily with 1 is called a right order in Q if each $q \in Q$ has the form $q = r s^{-1}$ for some $r, s \in R$. A left order is defined analogously.

A ring R is called order in Q if it is left and right order in Q.

The necessary and sufficient condition for a ring to be ordered in a quotient ring is given by a well known theorem of Goldie.

Theorem 0.4.3.(Goldie) A ring R is semi prime right Goldie if and only if R is a right order in an artinian ring Q.

Definition 0.4.4. Suppose that R is a right order in Q. Then a fractional right Rideal is a submodule I of Q_R such that there exist units a, b \in Q for which al \subseteq R and b I \subseteq I.

Examples: $\frac{1}{2}$ Z is a fractional Z-ideal. In a semi prime right Goldie ring any essential right ideal I (i.e. I \cap J \neq 0 for any non-zero ideal J) is a fractional right ideal.

More generally, in a prime Goldie ring any ideal is a fractional ideal (since any ideal is right and left essential).

Definition 0.4.5. Suppose that R is a prime Goldie ring. A fractional R-ideal A is invertible if there exists a fractional R-ideal B with AB = BA = R. B is usually denoted by A^{-1} .

Definition 0.4.6. A prime Goldie ring R is called Asano order (or Asano prime ring) iff every nonzero ideal of R is invertible.

Definition 0.4.7. A ring R is called right Hereditary if any right ideal of R is

projective, or equivalently every submodule of a projective module is projective.

Definition 0.4.8. A ring R is called Dedekined prime, or noncommutative Dedekind domain if R is a Hereditary Noetherian, Asano order.

§ 0.5 (PLID) Rings (Principal left ideal domain) Polynomial Identities and Tensor Products.

Definition 0.5.1. A left ideal I Δ , R is called principal if I = R a for same a ϵ R **Definition 0.5.2.** A ring is called (PLI) principal left ideal ring if every left ideal is principal and is called PLID if R is a domain and PLI.

If R is PLID with $\sigma(R-\{0\}) \subseteq \text{Unit R}$ then $S = R[x, \sigma]$ is a PLID.

Definition 0.5.3. A ring (an algebra) R with center (over a commutative ring) C is called to satisfy a polynomial identity (PI) of degree n if there is a polynomial $f(x_1, x_2, ..., x_n) \in C$ $[x_1, x_2, ..., x_n]$; the free algebra over C with n-variables $x_1, ..., x_n$, such that $f(a_1, ..., a_n) = 0$ for all $a_1, a_2, ..., a_n \in R$.

Of course, any commutative ring satisfies a P.I since $f(r_i, r_j) = r_i r_j - r_j r_i = 0$ for r_i , $r_j \in \mathbb{R}$.

Definition 0.5.4.Let A, B be F-algebras. Then the tensor product of the algebras A, B is

 $\{\Sigma (a_i \otimes b_i) \mid a_i \in A, b_i \in B\}$ such that

$$i) \ ((\Sigma_{i}a_{i}) \otimes b_{j}) \ = \ \Sigma_{i}(a_{i} \otimes b_{j}) \ \ \text{and} \ \ (a_{i} \otimes (\Sigma b_{j})) \ = \ \Sigma_{j}(a_{i} \otimes b_{j})$$

- ii) $\alpha a_i \otimes b_j = \alpha (a_i \otimes b_j) = (a_i \otimes \alpha b_j)$ and
- iii) $(a_i \otimes b_j)(a_i' \otimes b_j') = a_i a_i' \otimes b_j b_j'$. It is well know that
- 1- if $\dim_{\mathbb{F}} A = n$ and $\dim_{\mathbb{F}} B = m$, then $\dim A \otimes_{\mathbb{F}} B = mn$.
- 2- if A is an F-algebra and $M_n(F) = F_n$, (where F_n is the n X n matrices over F), then $A \otimes_F F_n \approx A_n$.
- 3- if A is an F-algebra and F[x], (F[[x]]) is the ring of polynomials (ring of power series), then

$$A \otimes_F F[x] \approx A[x], (A \otimes F [[x]] \approx A[[x]]).$$

§ 0.6 Polycyclic - by - Finite Groups.

Definition 0.6.1. The infinite Dihedral group $D_{\infty} = \langle a,b \mid b^{-1}ab = a^{-1}$ and $b^2 = 1 > 0$.

 D_{∞} contains infinite normal subgroups of finite index e.g. the subgroups $< a>_{\infty}$, $< a^2$, b> and infinite number of subgroups of order 2 namely the subgroups $M_i = < a^i \, b>_2$ for all i. Non of subgroups M_i is normal.

Definition 0.6.2. A subnormal series of subgroups of G is a chain $G = G_m \triangleright G_{m-1} \triangleright ... \triangleright G_o = \{1\}$, i.e. each $G_{i-1} \triangleleft G_i$

Definition 0.6.3. A group G is polycyclic (poly-infinite cyclic) if G has a subnormal series with each factor G_i/G_{i-1} cyclic (infinite cyclic).

Definition 0.6.4.G is polycyclic - by - finite, if G has a polycyclic group of finite index.

Thoerem 0.6.5. G is polycyclic - by - finite, if G has a subnormal series whose factors are finite or cyclic.

Moreover, any polycyclic - by - finite group has a characteristic poly {infinite cyclic} subgroup H of finite index.

Definition 0.6.6.G is solvable group if there is a subnormal series with each factor abelian.

Definition 0.6.7.G is supersolvable group if it has a normal series whose factors are cyclic.

Definition 0.6.8.G is nilpotent if it has a central series, that is a normal series $(1) = G_o \le G_1 \le ... \le G_n = G \text{ such that } G_i/G_{i-1} \subset \text{center } (G/G_{i-1}) \text{ for all } i$

Thus nilpotent groups and supersolvable groups are polycyclic and every polycyclic group is solvable.

The infinite dihedral group D_{∞} is an easy but enlightening example of nonnilpotent polycyclic group.

Definition 0.6.9. The Hirsch number h(G) of a polycyclic - by - finite group G is the number of infinite cyclic factors in a subnormal series. h(G) is unique for a given group G.

§ 0.7 Finite Fields, Absolute Fields and More about Modules.

Definition 0.7.1. A field K is called ABSOLUTE iff K is an algebraic over a finite field which is equivalent to $k^{n(k)} = k$, for every $k \in K$.

The next proposition though it can be deduced by routine calculations but has many important applications.

proposition 0.7.2. if K is a finite field, $|K| = p^n$, where p is a prime number and n is a positive integer. Let L is a finite extension of K, then $L=p^m$, where m = ns for some positive integers s.

K* and L* are cyclic groups generated by η, ξ the $(p^n - 1)^{th}$ and $(p^m - 1)^{th}$ roots of unity respectively and $\xi^t = \eta$, where $t = \sum_{i=1}^S p^{Sn-in}$ (e.g. if m = 2n, then $t = p^n + 1$ The group G(L;K): automorphism group of L which keeps K fixed has an order which equals $\frac{m}{n} = s$.

Definition 0.7.3. A module M_R is called compressible if for all nonzero submodules N of M there exists a monomorphism $M \rightarrow N$.

In particular every uniform ideal of a prime Goldie ring is compressible.

Definition 0.7.4. A module M_R is called stably free of rank t iff $M \oplus R^S = R^{S+t}$. It can be easily deduced that every finitely generated free module is stably free and that every stably free module is finitely generated projective.

Definition 0.7.5. A ring R is called right regular ring (r-regular) iff every finitely generated R-module has finite projective dimension, (or iff every cyclic R-module has finite projective dimension).