Contents

Chapter (1)

Introduction and Literature survey

1.1	The glassy state	1
1.2	The structure of glasses	2
1.3	Glass formation	4
1.4	Superionic Solids	6
1.4.1	What are Suporionic Conductors	6
1.4.2	Sublattice Disordering	7
1.5	Electrical conduction in solids	9
1.6	Structural Models.	10
1.6.1	Cluster Model	10
1.6.2	Cluster - bypass Model	10
1.6.3	Structural models for Agx-Ag ₂ ch-P ₂ ch ₅ , (x=I,Br,Cl; ch=O,Se) glasses	10
1.6.4	The dispersed Solute Model	11
1.6.5	Jump Diffusion Models and Frequency Dependent Conductivity	11
1.7	Complex impedance method	14
1.8	Dielectric properties and relaxation	18
1.9	The effect of frequency and temperature on the dielectric loss	21
1.10	Blocking electrode	22
1.11	Theory and technique of Mossbauer effect	24
1.11.1	The hyperfine interactions	25
1.12	Metal-Semiconductor Devices	
1.12.1	Schotty Effect	27
1.12.2	Energy band relation at metal – semiconductor contact	29
1.12.2	.1 Ideal condition and surface states	29
1.12.2	2 Depletion Layer	30
1.12.2	.3 General expression for the barrier hieght	32
1.12.3	Thermionic Emission Theory	35
1.12.4	Current-Voltage Measurement	37

4 4 2 Introduction to Solid State Dallettes	39			
1.13 Introduction to Solid state batteries 1.13.1 Advantages of solid state battery technology	40			
a value to betterion	41			
1.13.2 Application of solid state ionics to batteries 1.13.2.1 High-temperature cells	41			
and the Boltzman	42			
1.13.3 Solid State Primary Lithium Batteries	43			
1.13.3.1 Lithium - Iodine Cells				
1.13.4 Solid State Secondary Lithium Batteries	42			
1.13.5 Secondary Insertion Cathode Lithium Batteries	43			
1.13.6 Silver Batteries	44			
1.13.6.1 Silver Cells	45			
1.13.7 Microbatteries	46			
1.13.7.1 Silver and Copper Microbatteries	46			
* Literature Survey	48			
* Aim of the work 66 Chapter (2) Experimental work				
<u>Experimental work</u>				
2.1 Preparation of samples.	67			
2.1 Preparation of samples	68			
2.1 Preparation of samples	68			
2.1 Preparation of samples	68 68			
2.1 Preparation of samples	68 68			
2.1 Preparation of samples. 2.2 Characterization of the samples. 2.2.1 X- ray diffraction patterns. 2.2.2 Diffrential thermal analysis (DTA). 2.2.3 IR Spectra.	68 68 68			
2.1 Preparation of samples	68 68 68 69			
2.1 Preparation of samples	68 68 68 70			
2.1 Preparation of samples				

Chapter (3)

Results and discussion

3.1	Mossbauer effect results	77
3.2	Density and Molar volume	79
3.3	General discussion on the structure of glass	- 80
3.4	Electrical characterization (conduction and dielectric properties)	82
3.4.1	The frequency dependence of the total conductivity	82
3.4.2	The temperature dependence of the total conductivity (σ_{tot})	87
3.4.3	Complex Impedence results	89
3.4.4	Effect of frequency and temperature on the dielectric constant ε`	91
3.4.5	Effect of frequency and temperature on the dielectric loss ε"	93
3.4.6	Effect of frequency and temperature on the dielectric loss tangent (tan δ_i)	95
3.4.7	Temperature dependence of relaxtion time , τ	97
3.4.8	Temperature dependence of diffusion coefficient , D	99
3.5	Effect of asymmetric electrodes on conduction and dielectric properties of	
	superionic solid electrolyte powder	102
3.6	I-V characteristic of the superionic solid electrolyte (SE)	106
3.7	Superionic Solid electrolyte glass for chargeable battery application	109
3.7.1	Effect of thickness on the charging and discharging of solid electrolyte	
	Ag/SE/Ag ₂ S battery	109
3.7.2	Effect of pressure on the charging and discharging of solid electrolyte	111
272	batteriesStudy of the charge-discharge processes by using different load	111
J.1.J	resistances	112
3.7.4	Effect of ambient temperature on the charge-discharge processes	-
^ - -	of the Ag/SE/Ag ₂ S battery.	113
პ./.5	Effect of annealing on the charging and discharging of solid electrolyte	
	Ag/SE/Ag ₂ S battery	115

3.7.6	Effect of solid electrolyte Ag/SE/Ag ₂ S battery storage on the	
C	charging and discharging process1	16
* Ca	onclusions	117
* Re	eferences	118
* Ar	rabic abstract	