RESULTA

RESULTS

A- The effect of chronic irradiation on the biology of the house fly, M. domestica L., through successive generations:

It is pointed out, that this experiment was carried out to explain the effects of chronic irradiation on the biological characters. The main aim of the work is to study the possibility of developing radioresistance in \underline{M} . domestica \underline{L} . populations which are successively irradiated in ancestral generations.

The irradiated subgroups left till emergence, the number of emerging adults and sex ratio were recorded. Daily mortality of both sexes was recorded, also number of laid eggs and egg hatchability were taken.

1- Adult emergence and sex ratio:

The effect of chronic exposure of gamma radiation on the adult emergence and sex ratio of both males and females M. domestica L. (irradiated as pupae in ancestral manner) was tested. The results obtained were tabulated in table (1) as well as graphically illustrated in figs. (1 and 2).

Results obtained as represented in this table indicate the following:

Table (1-a): Average adult emergence and sex ratio of <u>Musca domestica</u>
L. successively irradiated in ancestral generation with substerilizing doses 0 and 700 rad in each generation. (* S.D.= standard deviation, **o*= male, ***o*= female).

				· ·	4	,-
Gerneration number	F ₁	F ₃	F ₅	F ₈	F ₁₁	F ₁₄
Control + S.D. No. of pupae	200	213	190	187	233	205
No. of Adults	157	163	151	143	185	167
Z of Adults	78.5 <u>+</u> 2.5	76.53 <u>+</u> 0.694	79.47 <u>+</u> 1.528	76.48 <u>+</u> 0.3606	79.4 <u>+</u> 0.3606	81.46 <u>+</u> 0.751
% of Males	50.35 <u>+</u> 1.893	47.03 <u>+</u> 2.7523	48.33 <u>+</u> 0.577	38.23 <u>+</u> 0.5774	40.6 <u>+</u> 0.1155	40.77 <u>+</u> 0.6807
% of Females	28.15 <u>+</u> 1.5275	29.5 <u>+</u> 2.3094	31.44+ 2.0817	38.25 <u>+</u> 1.5044	38.8 <u>+</u> 0.2082	40.69 <u>+</u> 0.2517
Sex ratio **0 : *** φ	1:0.559	1:0.627	1:0.644	1:1	1:0.0956	1:0.998
700 r + S.D.						
No. of pupae	190	213	228	207	219	193
No of Adults emerged	135	148	147	104	102	78
% of Adults emerged	71.05 <u>+</u> 1.000	69.48 <u>+</u> 1.1247	64.47 <u>+</u> 1.5275	50.24+ 1.81173	46.57 <u>+</u> 0.7211	40.4 <u>+</u> 0.9539
% of Males	39.85 <u>+</u> 4.464	41.89 <u>+</u> 2.7141	36.83 <u>+</u> 2.0817	24.87 <u>+</u> 1.047	23.2± · 0.1732	19.87 <u>+</u> 0.5859
% of Females	31.2 <u>+</u> 3.173	27.59 <u>+</u> 3.1273	27.69 <u>+</u> 2.363	25.39 <u>+</u> 1.0817	23.37 <u>+</u> 0.6032	20.54 <u>+</u> 0.5773
Sex ratio ** 0 : *** 0	1:0.783	1:0.659	1:0.752	1:1.02	1:1.01	1:1.03

Table (1-b): Average adult emergence and sex ratio of <u>Musca domestica</u>
L. successively irradiated in ancestral generation with substerilizing doses 900 and 1100 rad in each generation. (* S.D.= standard deviation, **o= male, ***o= female).

Gerneration number	F ₁	F ₃	F ₅	F ₈	F ₁₁	F ₁₄
900 r + S.D.						
No. of pupae	202	228	220	197	224	235
No of Adults emerged	111	119	110	70	64	5 2
% of Adults emerged	54.95 <u>+</u> 2.0817	52.19 <u>+</u> 1.736	50.0 <u>+</u> 1.2588	35.5 <u>+</u> 2.7471	28.13 <u>+</u> 0.30	22.13 <u>+</u> 1.6703
% of Males	27.8 <u>+</u> 2.754	31.0 <u>+</u> 1.826	28.0 <u>+</u> 1.641	18.1 <u>+</u> 1.6523	13.9 <u>+</u> 0.421	11.83 <u>+</u> 0.7636
% of Females	27.15 <u>+</u> 0.8660	21.19 <u>+</u> 1.264 5	22.0 <u>+</u> 0.500	17.4 <u>+</u> 0.4107	14.23 <u>+</u> 0.2217	10.3 <u>+</u> 0.9074
Sex ratio ** o*: *** o	1:0.975	1:0.684	1:0.786	1:0.9613	1:1.024	1:0.871
$1100 \text{ r} \pm \text{S.D.}$						
No. of pupae	214	207	206	217	201	212
No of Adults emerged	104	95	83	58		
% of Adults emerged	48.6 <u>+</u> 3.4035	45.89 <u>+</u> 1.768	40.29 <u>+</u> 1.2583	26.73 <u>+</u> 0.7932		
% of Males	31.0 <u>+</u> 1.50	45.89 <u>+</u> 0.2637	24.5 <u>+</u> 1.803	13.33 <u>+</u> 0.5774	 	
% of Females	17.60 <u>+</u> 2.517	24.95 <u>+</u> 1.5358	15.79 <u>+</u> 3.056	13.40+ 0.2517		
Sex ratio ** o [#] : *** ♀	1:0.0568	1.0.839	1:0.644	1:1.01		

Table (1-c): Average adult emergence and sex ratio of Musca domestica L. successively irradiated in ancestral generation with substerilizing doses 1100 and 1300 rad in each generation. (* S.D.= standard deviation, **o= male, ***o= female).

Gerneration number	F ₁	F ₃	F ₅	F ₈	F ₁₁	F ₁₄
1300 r \pm S.D.						
No. of pupae	218	207	209	215	~~	
No of Adults emerged	93	85	48			***
% of Adults emerged	42.66 <u>+</u> 3.8188	41.06 <u>+</u> 0.7255	22.49 <u>+</u> 0.7636			
% of Males	22.0 <u>+</u> 1.323	24.21 <u>+</u> 1.4823	14.7 <u>+</u> 0.764			
% of Females	20.66 <u>+</u> 1.55	16.85 <u>+</u> 2.1967	7.8 <u>+</u> 1.00			
Sex ratio ** 0": *** 9	1:0.939	1:0.696	1:0.531			

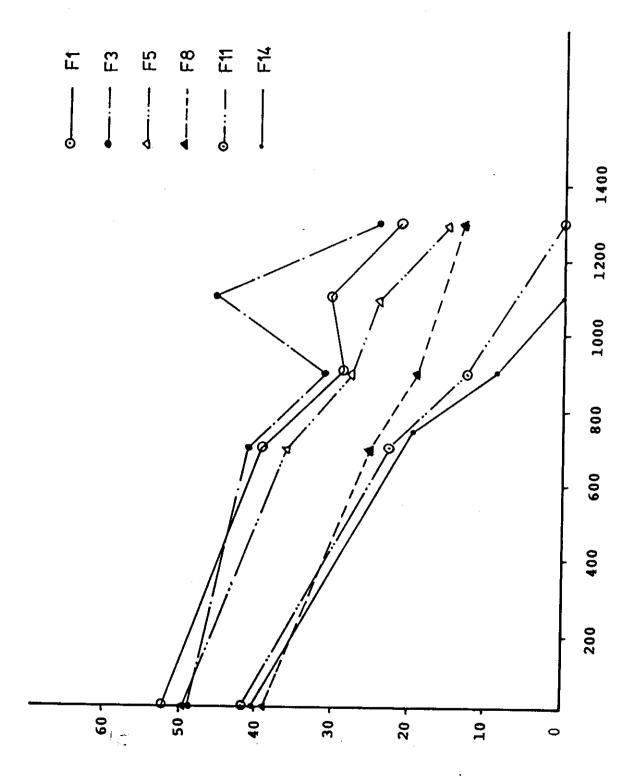
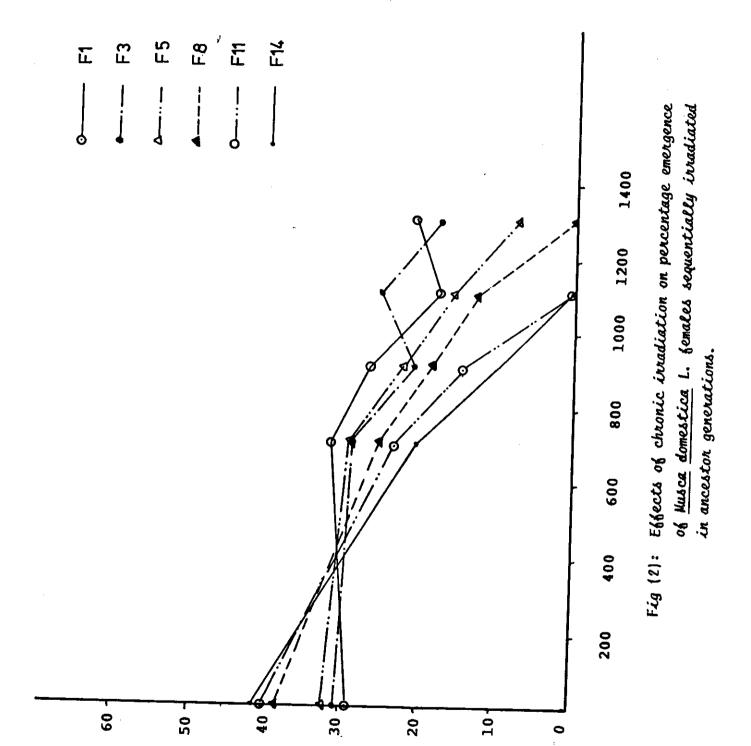
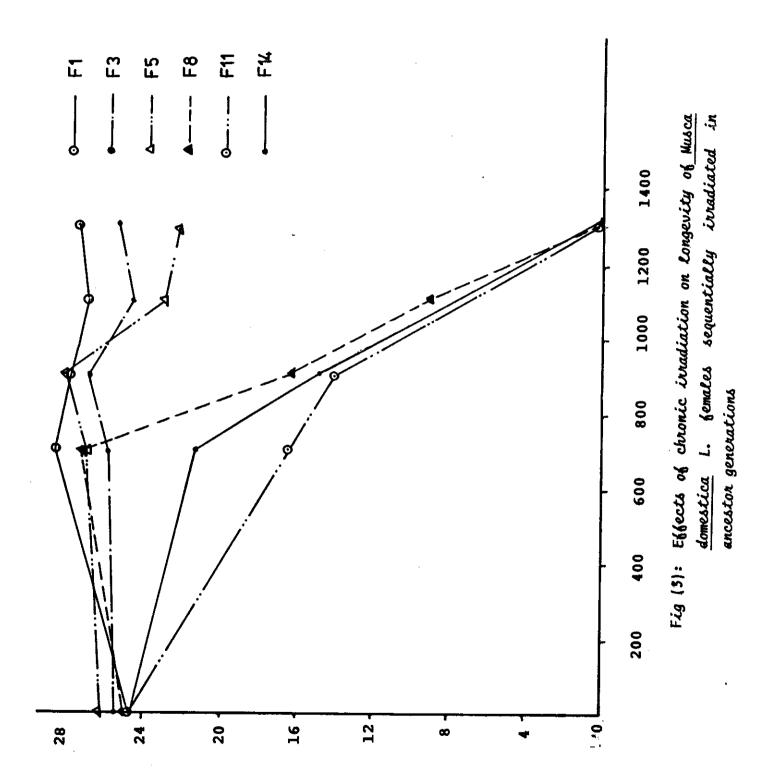
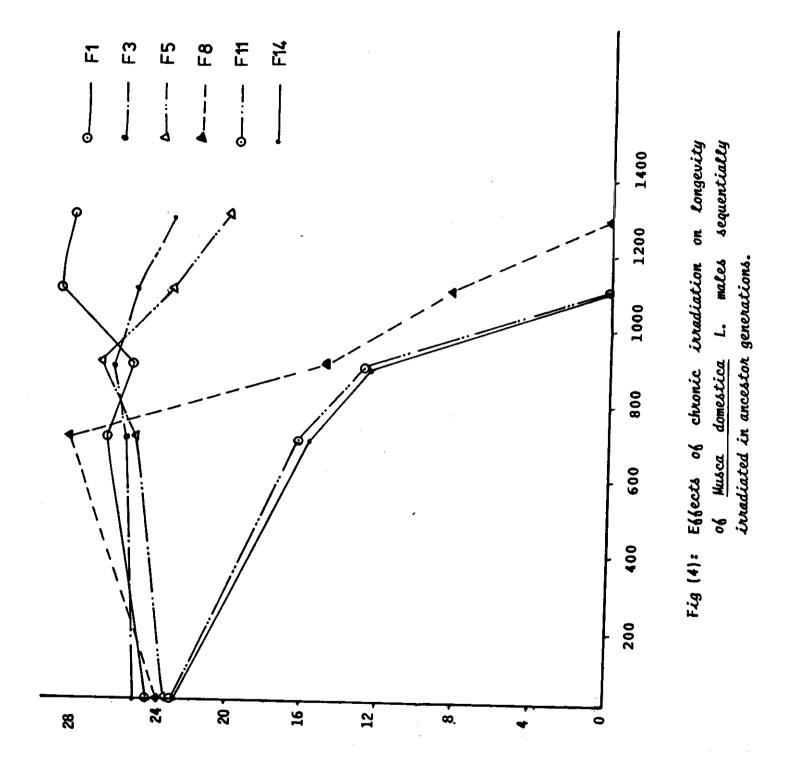



Fig (1): Effects of chronic irradiation on percentage emergence of Musca domestica L. males sequentially irradiated in ancestor generations.

- a- Emergence of adult flies was adversely affected at all tested doses through successive generations.
- b- The sex ratio was unaffected with increasing the dose level through successive generations.

Population recieved 900 rad showed significant decrease in percent adult emergence than their corresponding check group (P<0.01 , 0.02 , 0.05). While populations recieved 1100 and 1300 rad showed irrigular significant decrease in adult emergence than their corresponding check group (P<0.01 , 0.02 , 0.05).


The results tabulated in table (1) show that F_7 female adults emerged from pupae treated with 1100 rad did not lay any eggs and F_{10} female adults emerged from 900 rad population also did not lay any eggs.


The sex ratio was unaffected with increasing the dose level through successive generations.

2- Adult longevity:

Results in table (2) and (figs. 3 and 4) indicate the effect of chronic irradiation on the longevity of both sexes of M. domestica L. sequentially irradiated in ancestral generations. Tables (3, 4, 5, 6, 7, 8) Figs. 5 to 16 represent the effect of chronic exposure of gamma radiation on the percentage survival rate.

Table (2):	Average ancestra generat	Average ' life span of Musca domestica L. adults successively irradiated in ancestral generations with substerilizing doses 700, 900, 1100 and 1300 (r) in each generation (in days).	n of Musca dom rith substeriliz	mestica L. aduli ing doses 700,	ts successively 900, 1100 and 13	irradiated in 100 (r) in each
Generation		Control		Doses - Rads		
Number	×	Mean + S.D.	700 K ean + S.D.	900 Mean + S.D.	1100 Mean <u>+</u> S.D.	1300 Wean <u>+</u> S.D.
L	Male	23.83 ± 0.60011	+ 0.60011 26.36 + 0.2902	25.23 ± 0.6961	29.35 ± 0.5979	28.85 + 0.5402
→ -	Female	24.98 ± 0.49100	28.79 ± 0.3955	28.79 ± 0.3955 ' 27.38 ± 0.6070	26.19 ± 0.7833	26.25 ± 0.8185
Ę,	Male	24.60 ± 0.5291	25.30 ± 0.6083	26.05 ± 0.6144	24.70 ± 0.7810	23.22 ± 1.2186
n	Female	25.30 ± 0.6033	25.90 ± 0.5196	26.80 ± 0.5000	24.80 ± 0.8185	25.30 ± 0.4243
i.	Male	23.70 ± 1.3077	25.30 + 0.4583	26.90 ± 1.2166	22.80 ± 1.480	20.10 ± 0.3606
	Female	26.30 ± 1.2490	27.11 ± 1.5605	27.82 ± 0.4657	23.16 ± 0.7024	22.11 ± 0.2646
G LL	Male	23.80 ± 0.6557	28.50 ± 0.3606	15.20 ± 0.6245	8.50 ± 0.1732	0.0
•	Fenale	25.30 ± 0.7211	26.90 ± 0.755	16.40 ± 0.4580	9.10 ± 0.6557	0.0
ŭ	Male	23.17 ± 0.3055	16.33 ± 0.5774	14.03 ± 0.9018	0.0	0.0
II .	Female	24.90 ± 0.4583	21.60 ± 0.4592	15.00 ± 1.6371	0.0	0.0
ų.	Male	23.60 ± 0.5568	16.03 ± 0.5033	13.30 ± 0.9166	0.0	0.0
5 7 .	Female	24.53 ± 0.4923	16.90 ± 0.3464	13.17 + 0.3055	0.0	0.0

Average percentage of survival rates of <u>Musca domestica</u> L. adults produced from successively irradiated pupae In the first generation with substerilizing doses of 700, 900, 1100 and 1300 rad in each generation. Table (3):

Days after emergence	Şex			Doses-Rads		
		Control	700	006	1100	1300
		Mean + S.D.	Mean + S.D.	Mean + S.D.	Mean + C D	
•	Male	100.0 + 0.0000	100.0 + 0.0000	1721 0 1 0 00		real + 5.U.
7	Fomalo	0 - 0 - 0 - 0	00000	1951.0 + 0.26	15.2 ± 0.6570	84.1 ± 0.230
		0179.0 - 0.05	95.0 ± 1.2300	92.3 ± 0.7310	88.3 + 1.2530	88.0 + 0.000
18	Male	100.0 ± 0.000	88.0 + 1.0200	78.2 + 0.5634	70 0 + 0 5210	1 6 03
!	Fema le	90.0 + 0.5300	78.1 ± 1.3100	87.2 + 0.9725	81.2 + 1.3720	82 1 + 0 000
19	Male	100.0 + 0.0000	65.4 + 0.3030	62.3 + 1.2631	65 8 ± 1 2670	000.0
}	Female	77.5 + 1.5300	65.1 + 0.1560	65.1 + 0.9754	51 9 + 0 1024	55.1 ± 0.153
8	Male	100.0 + 0.0000	58.1 + 0.1150	E6 3 ± 1 5700	450.10-10-10-10-10-10-10-10-10-10-10-10-10-1	22.4 ± 0.000
3	Female	63 4 + 0 3210		00/01 - 010	4/.2 + 0.51/3	35.4 ± 1.620
		0175.0 - 4.50	60.5 ± 0.1300	42.2 ± 0.8764	48.2 ± 0.4721	48.5 + 0.000
21	Male	92.4 ± 1.2320	47.5 ± 0.2360	48.2 + 0.2100	25.7 + 0.5620	700 1 7 1 00
	Female	37.1 ± 0.3160	32.5 ± 1.5600	36.7 ± 1.0000	21.4 + 0.1532	22.5 + 0.000
23	Male	86.6 ± 0.0050	37.5 ± 0.5621	32.1 + 0.0000	27 3 + 0 3450	
	Fenale	36.0 ± 0.9530	18.3 ± 0.0000	22.1 ± 0.6573	0.0	0.0
23	Male	70.3 ± 0.0201	18.3 ± 0.6210	29.8 + 1.5000	0.0	
	Fema le	0.0	15.3 ± 1.5600	15.0 ± 0.2172	0.0	0.0
24	Kale	59.2 + 0.0000	18.3 ± 0.2610	29.0 ± 0.5000	0.0	0.0
	remale	0.0	0.0	0.0	0.0	0.0

Table (4): Average percentage of survival rates of <u>Musca domestica</u> L. adults produced from successively irradiated pupae for three generation with substerilizing doses of 0, 700, 900, 1100 and 1300 rad.

Days after emergence	Š			Doses-Rads		
	;	Control	700	006	1100	1300
		Mean + S.D.	Mean + S.D.	Mean + S.D.	Mean + S.D.	Mean + S.D.
14	Male	92.1 ± 0.5673	75.1 ± 0.563	68.2 ± 0.5710	72.0 + 1.5720	62.1 + 0.3100
	Fema le	100.0 ± 0.000	92.5 ± 0.156	73.2 ± 0.7630	72.5 ± 0.2760	65.1 ± 2.1530
16	Male	88.0 ± 1.2430	65.0 ± 0.727	56.8 + 1.2302	62.5 + 0.3740	$\frac{1}{51.1} + 0.5160$
:	Female	90.0 ± 1.2300	85.1 ± 2.345	67.1 ± 0.5620	66.0 ± 0.3456	60.0 ± 1.3720
œ	Male	84.3 ± 0.2570	62.1 ± 0.153	55.0 + 1.2720	54.1 + 0.9860	42.3 + 1.6531
2	Female	88.1 ± 0.9720	70.0 ± 1.273	62.5 ± 0.2130	61.1 ± 1.3570	52.0 + 0.1560
۶	Male	74.5 ± 0.4210	57.5 ± 1.241	50.2 + 0.2574	45.1 + 0.7812	40.1 + 0.2670
}	Female	84.3 ± 1.5670	65.1 ± 0.572	55.0 ± 1.3520	52.0 ± 1.5630	42.1 + 1.5670
22	Male	58.0 + 1.3150	52.3 + 0.562	38.1 + 1.5732	35.1 + 0.6531	32.5 + 1 5320
i	Female	80.0 + 0.2350	61.5 ± 1.362	54.0 ± 1.7560	45.0 + 0.2172	40.3 + 0.5370
24	Male	47.5 ± 2.5700	41.2 ± 1.572	20.0 ± 0.5714	20.1 + 0.4231	35.0 + 0.2710
	Fema le	71.2 ± 1.5630	57.8 + 1.347	50.2 ± 1.4621	35.0 ± 1.3721	34.0 + 1.2730
92	Male	46.0 ± 1.5630	32.1 ± 0.351	16.1 ± 0.2372	10.1 + 0.5631	15.5 + 0.5145
	Female	65.0 + 1.3510	52.1 ± 0.561	40.0 + 1.5631	31.0 ± 1.5321	25.0 + 0.2760
8	Maje	37.5 ± 0.2731	19.0 ± 0.172	0.0 ± 0.2571	8.2 + 0.2172	$\frac{1}{5.0 + 1.2731}$
	Fema le	45.0 + 0.2730	41.1 ± 0.789	31.0 ± 0.2150	10.0 ± 1.5720	15.0 + 1.3574

Average percentage of survival rates of Musca domestica L. adults produced from successively irradiated pupae for five generation with substerilizing doses of 0, 700, 900, 1100 and 1300 rad. Table (5):

Days after	Ċ			Doses-Rads	,	
emergence	ž	Control	700	006	1100	1300
		Mean + S.D.	Wean + S.D.	Mean + S.D.	Mean + S.D.	Mean + S.D.
17	Kale	98.0 ± 0.3120	95.0 + 1.563	91.1 ± 0.1560 95.0 ± 1.3470	84.2 ± 1.3520 89.0 ± 0.4710	80.2 ± 1.5720 86.0 ± 1.4720
18	Male Female	97.1 ± 0.2172 97.0 ± 1.3560	92.0 ± 0.210 97.0 ± 0.250	86.2 + 1.5600	77.1 ± 0.2530 85.0 ± 1.2720	74.4 ± 0.5630 85.0 ± 1.3420
19	Male Female	92.5 ± 0.6740 92.0 ± 0.5530	87.1 ± 0.245 85.0 ± 0.572	77.1 ± 0.1570 86.0 ± 1.3570	68.5 ± 0.5710 82.0 ± 0.3210	60.6 ± 0.9720 64.0 ± 0.8910
29	Male Female	95.5 ± 0.1769 84.0 ± 0.2572	64.2 ± 0.675 77.0 ± 0.272	65.3 ± 0.5720 75.0 ± 0.2730	51.6 ± 1.2570 80.0 ± 0.4320	45.3 ± 0.1563 53.2 ± 0.6721
21	Male Female	65.3 ± 0.3570 65.0 ± 0.1620	48.1 ± 0.253 69.0 ± 0.152	55.5 ± 0.2371 70.0 ± 1.3210	45.1 ± 0.9780 65.2 ± 1.0760	37.0 ± 0.3521 42.0 ± 0.2193
22	Male Female	58.2 ± 0.2530 56.0 ± 1.4772	40.5 ± 1.572 50.0 ± 1.347	45.3 ± 0.3452 55.0 ± 1.4721	31.2 ± 0.0371 45.3 ± 1.6231	30.8 ± 0.7821 33.0 ± 0.3541
23	Male Female	48.1 ± 1.5310 41.0 ± 1.5610	20.5 ± 1.560 0.0	40.0 ± 0.5721 45.0 ± 1.4321	30.4 ± 0.5341 32.1 ± 0.2141	0.0 31.0 ± 0.1721
24	Male Female	30.0 ± 0.2740 29.5 ± 0.1530	12.0 ± 1.374 0.0	20.0 ± 0.3511 40.0 ± 0.2141	0.0 ± 0.2431 31.1 ± 0.3156	0.0 30.0 ± 1.2730

L. adults produced from substerilizing doses of Musca domestica generation with Average percentage of survival rates of successively irradiated pupae for eight 0, 700, 900 and 1100 rad. Table (6):

Days after	9		Dos	Doses-Rads	
	4	Contr	700	006	1100
		Mean + S.D.	Mean + S.D.	Mean + S.D.	Mean + S.D.
ţ	Male	99.0 + 0.5630	84.0 ± 1.2730	80.0 + 1.5620	65.0 ± 0.7210
/1	Fema le	95.2 ± 1.2710	78.0 ± 1.5610	70.0 + 0.2750	72.0 ± 0.3540
c r	Male	97.3 ± 2.5710	82.0 ± 0.7890	75.0 ± 0.9831	53.0 ± 1.5621
9	Female	94.1 ± 1.5310	75.0 ± 0.5310	65.0 ± 1.5670	68.0 ± 0.7213
	Male	75.0 ± 0.9780	75.0 ± 1.0720	61.0 ± 0.2740	48.0 ± 0.3471
T3	Fena le	79.6 ± 0.4321	72.0 ± 0.2510	62.0 + 1.5340	65.0 ± 0.1562
ç	Male	42.5 ± 1.5631	65.0 ± 1.6710	22.0 + 0.2563	38.0 ± 0.2571
07	Female	57.1 ± 0.2531	58.0 + 0.5630	54.0 ± 0.1721	61.0 ± 0.4721
ī	Male	22.0 ± 1.2721	35.0 ± 0.1561	20.0 ± 1.3521	25.0 ± 0.3217
17	Female	17.0 ± 0.5310	45.0 ± 0.3723	45.0 ± 1.2560	32.0 ± 0.4721
ć	Male	10.2 ± 0.5620	30.0 ± 0.1532	20.0 + 0.3472	20.0 ± 0.1562
3	Female	0.0	23.0 ± 0.1721	32.0 ± 0.2572	22.0 + 0.1362
	Male	0.0	20.0 ± 0.5621	0.0	0.0
ĵ	Female	0.0	0.0	12.0 ± 0.7320	0.0
76	Male	0.0	0.0	0.0	0.0
* 7	Female	0.0	0.0	0.0	0.0

Table (7):	Average percentage from successively substerilizing doses	of survival rates of irradiated pupases of 0, 700 and 900	Musca domestica L. for eleven gen	L. adults produced generations with
Days after	E		Doses - Rads	:
emergence	sex	Control	700	006
		Mean + S.D.	n + S.D.	Mean + S.D
,	Male	100.0 ± 0.1235	94.0 ± 0.2531	75 ± 1.2350
0	Female	100.0 + 0.0000	85.5 ± 1.2714	70 ± 0.2730
1	Male	98.0 ± 0.2356	93.4 + 0.1627	72 ± 1.3520
/1	Female	90.0 ± 0.1237	84.3 ± 1.3274	78 ± 0.5721
o r	Male	98.0 ± 0.3256	98.5 ± 0.1752	68 + 1.3521
6	Female	53.2 + 0.4671	83.1 ± 1.2735	76 ± 0.4723
ğ	Male	78.0 + 0.4631	63.2 ± 0.1521	65 ± 1.7536
r.	Female	44.3 + 0.2461	80.1 ± 1.6231	75 ± 0.8271
ć	Male	33.0 ± 0.1562	35.6 ± 0.7321	45 ± 1.2691
07	Female	17.1 ± 1.3521	75.5 ± 1.3542	32 ± 0.1531
5	Male	5.0 + 1.2567	20.3 ± 0.2431	35 ± 0.2532
77	Female.	0.0 ± 0.5372	50.1 ± 1.5612	16 ± 1.7563
,	Male	0.0	13.0 ± 0.271	5 ± 0.1523
7 1	Female	0.0	37.0 + 1.6531	0.0
c	Male	0.0	0.0	0.0
6	Female	0.0	0.0	0.0

Table (8):	Average percentage of from successively substerilizing doses	irradiated pupa of 0, 700 and 900	Musca domestica L. for fourteen ge	s. adults produced generations with
Days after	•		Doses - Rads	
emergence	Sex	Control	700	006
		Mean + S.D.	Mean + S.D.	Mean + S.D.
,	Male	93.1 ± 0.2352	65.1 ± 1.3720	46.7 ± 1.3521
1 6	Pena le	92.0 ± 1.3715	66.0 ± 0.1560	40.1 ± 0.5271
(Male	92.3 ± 1.5671	61.2 ± 1.3710	40.5 ± 1.3521
17	Female	90.1 ± 0.9721	63.0 ± 0.2530	32.3 ± 0.1462
	Male	90.5 ± 1.6731	60.0 ± 0.2710	35.2 ± 1.3514
78	Female	86.3 ± 0.1561	$60.1 \pm .3560$	27.1 ± 0.5271
. (Male	88.0 ± 0.3514	55.3 ± 0.1621	28.3 + 1.5621
FT 1	Female	73.2 ± 0.2541	45.5 ± 1.1651	21.9 ± 0.2781
•	Male	74.2 ± 1.2736	45.5 ± 0.1672	15.1 ± 1.5321
92	Female	65.7 ± 0.2761	35.7 ± 0.1725	15.0 + 0.6680
Š	Male	65.4 ± 1.3251	36.6 ± 1.5165	10.0 ± 1.2673
T 7	Female	50.6 + 2.472	10.3 ± 0.1927	13.0 ± 0.5721
ć	Male	48.1 ± 0.1563	12.7 ± 1.2735	0.0
77	Female	38.0 ± 1.2720	0.0	0.0
(Male	36.5 ± 0.5310	0.0	0.0
23	Fenale	20.3 ± 0.1720	0.0	0.0

Figs. (5 - 16): Effects of chronic irradiation on percentage survival nate of Musca domestica L. sequen-

tially irradiated in anceston generations.

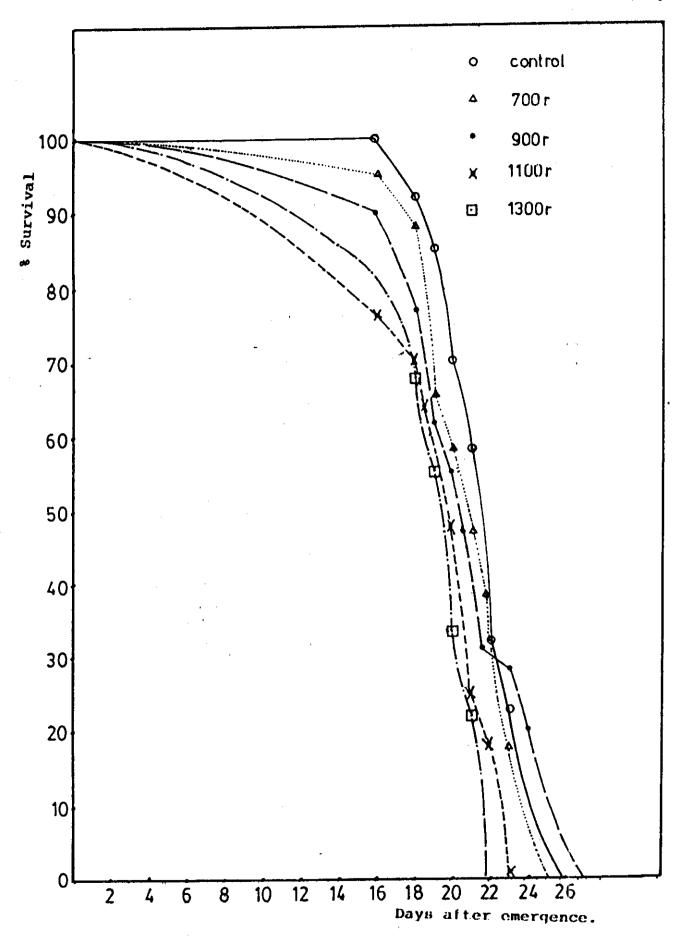


Fig (5): F₁ Wales

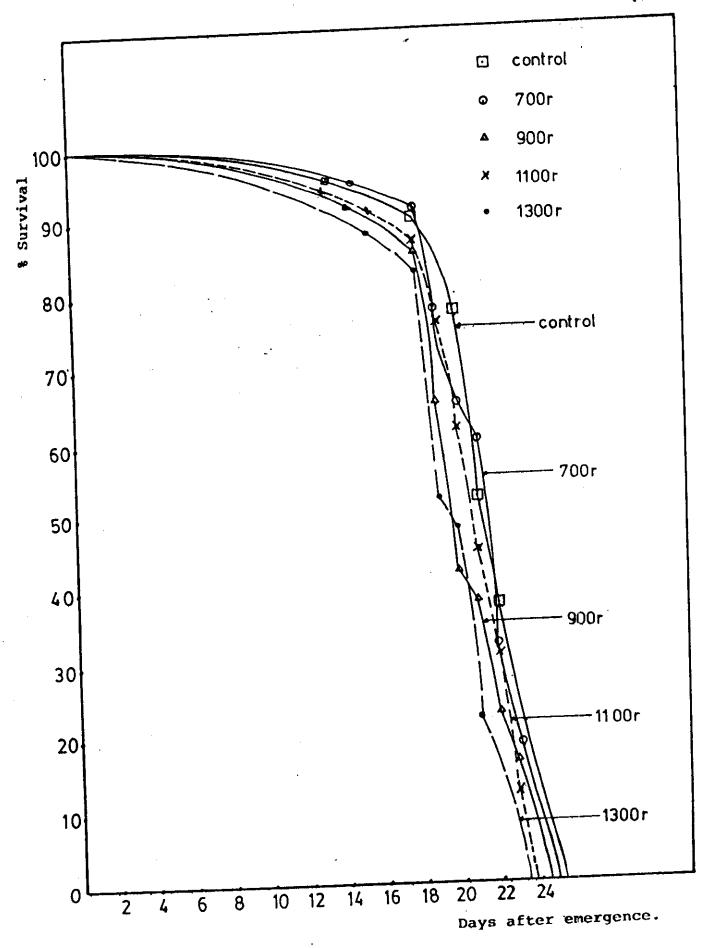


Fig (6): F₁ Females

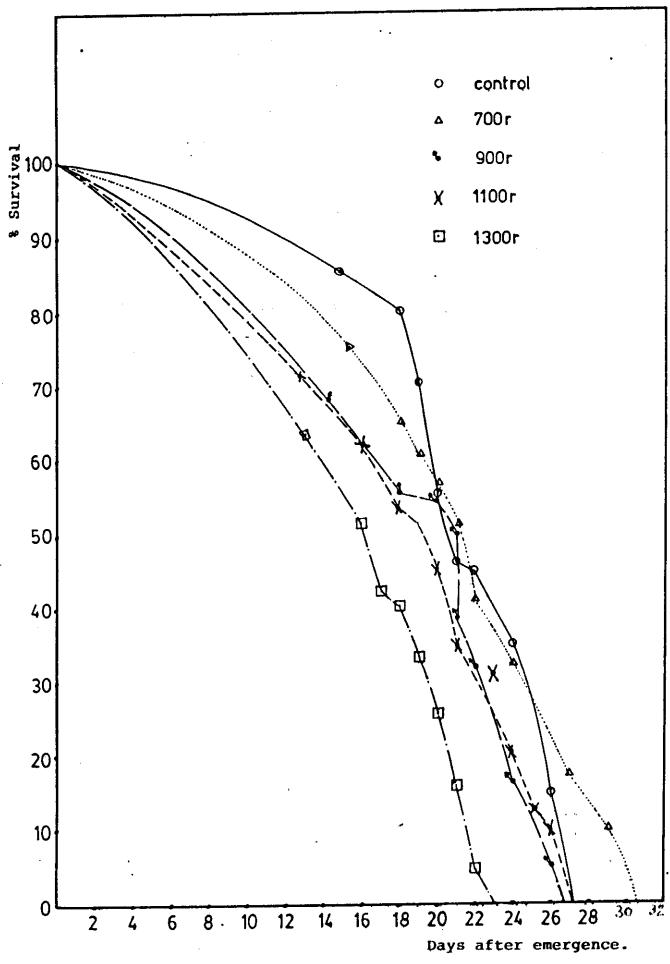


Fig (7): F3 Hales

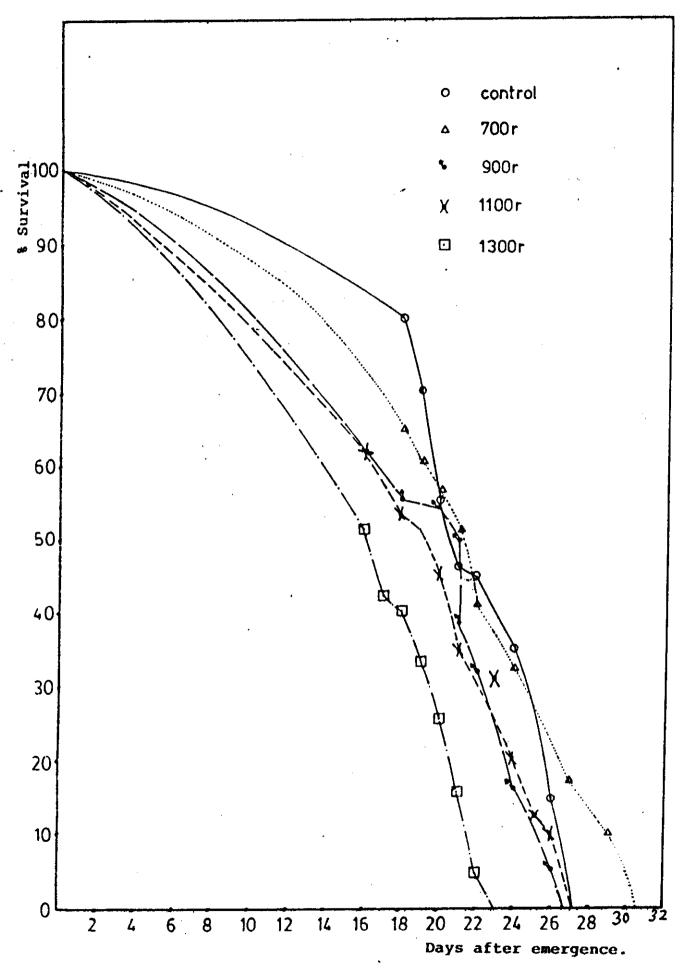


Fig (8): F3 Females

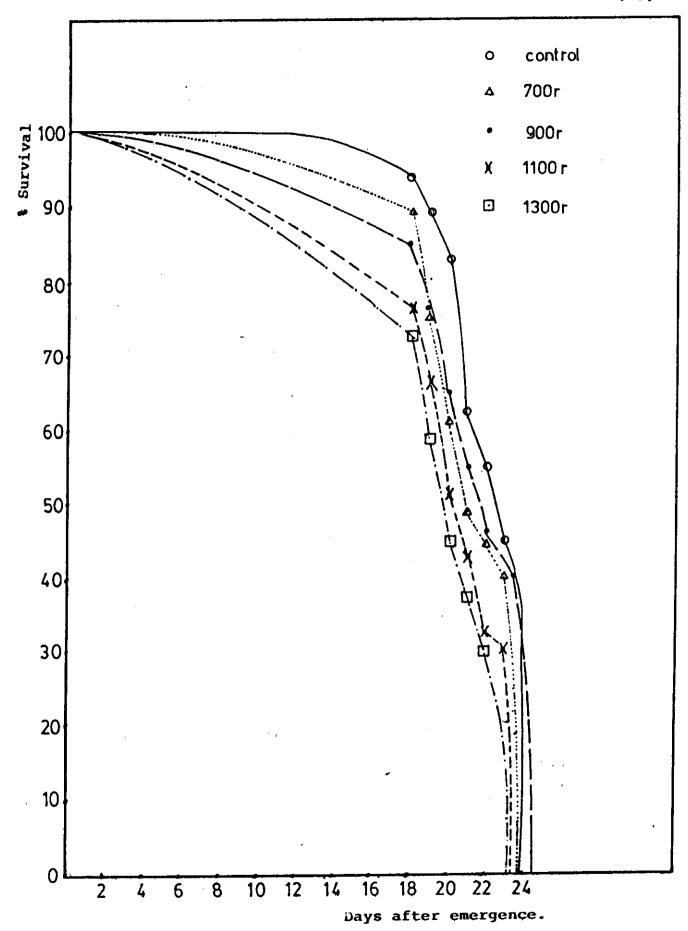


Fig (9): F5 Wales

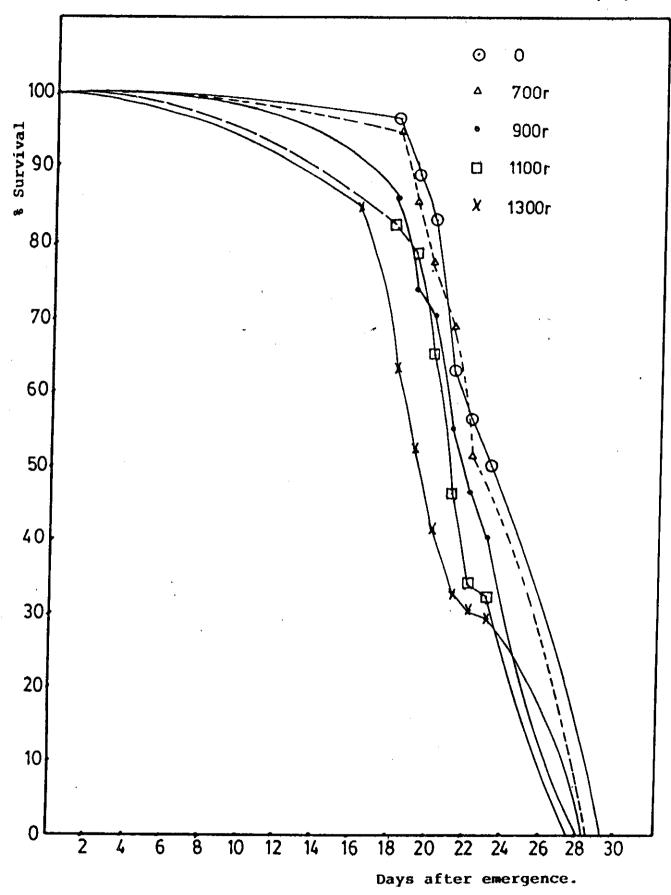


Fig (10): F5 Females

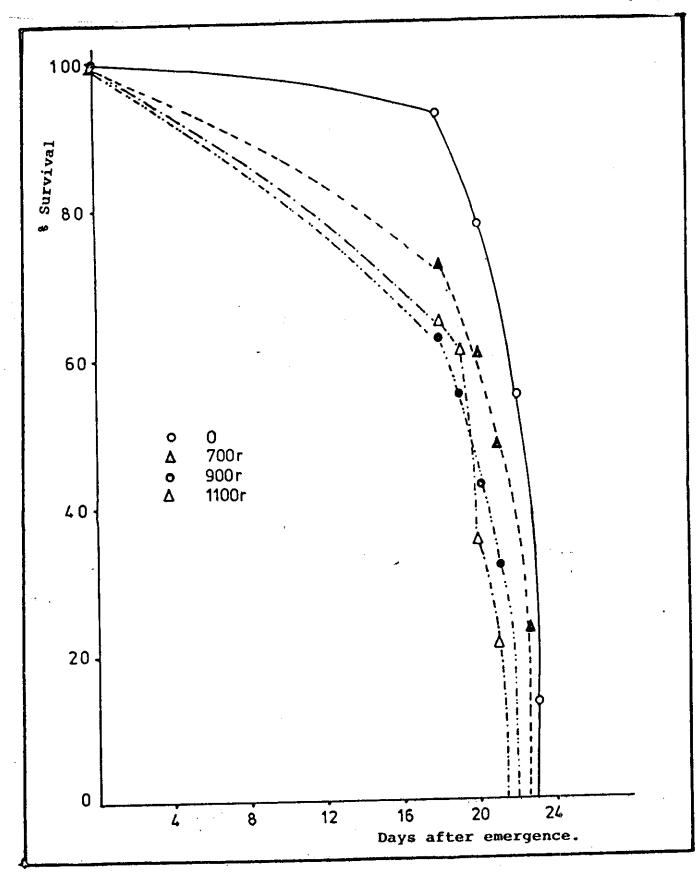


Fig (12): Fg Females

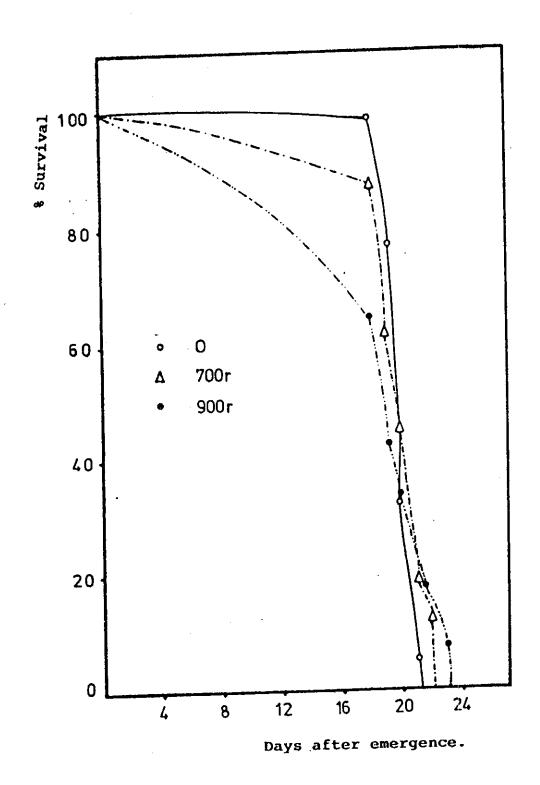


Fig (13): F₁₁ Hales

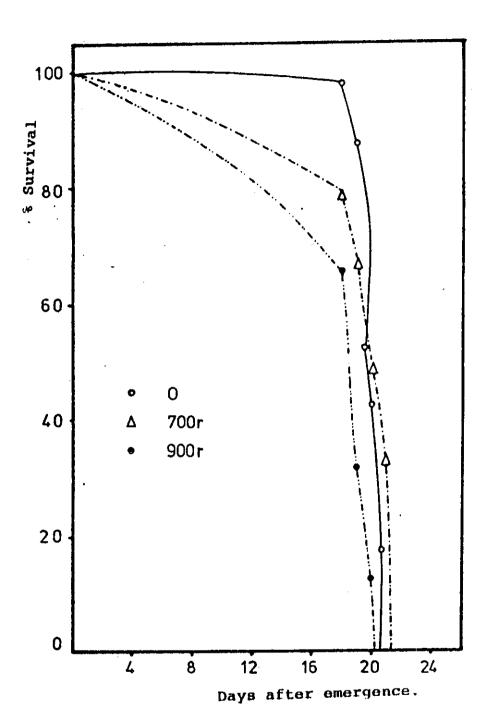


Fig (14): F₁₁ Females

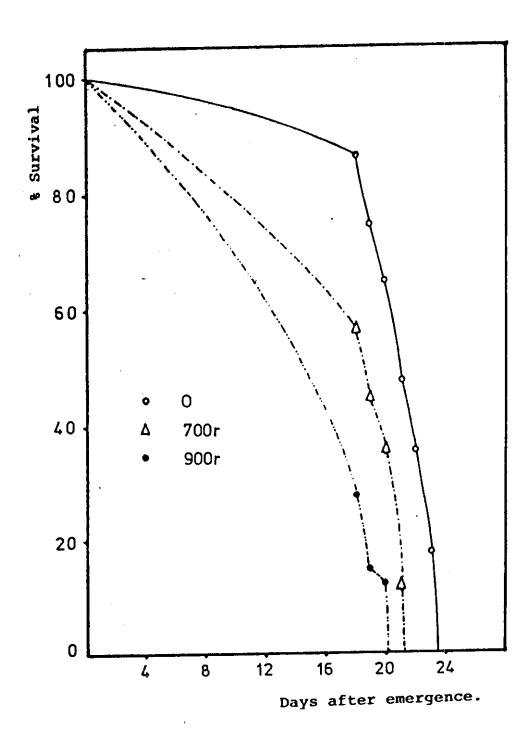


Fig (15): F14 Wales

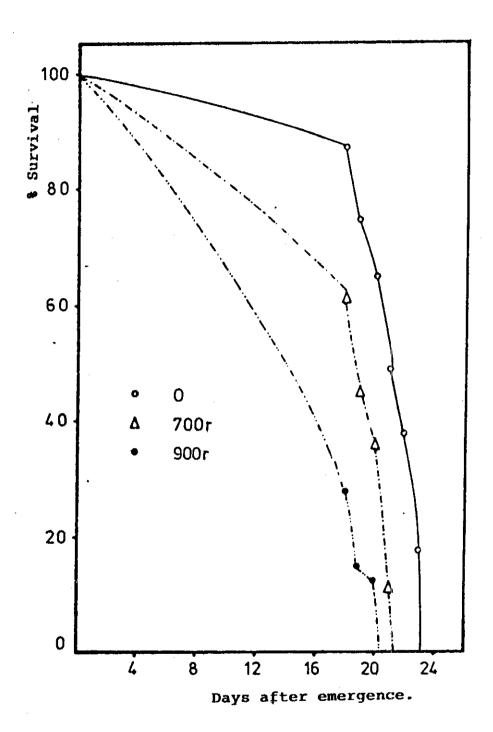


Fig (16): F14 Females

Results in this table and figures indicate the following:

- a- Adult longevity was highly affected by chronic irradiation. It is evident from these data that adult females derived from irradiated pupae of selected population and reared in the usual way, die at significantly faster rate and have a shorter life span than females derived from non irradiated population.
- b- There was a difference in mortality rates between irradiated and non irradiated populations; however, this differences was comparatively small.

In all, the longevity experiments have continued to be maintained essentially unchanged with each successive generation. Statistical analysis of the data in table (2) indicate that:

- Both males and females from F_1 population treated with 700, 900, 1100 and 1300 rad survived significantly longer than those of check population (P<0.01, 0.02).
- * Both sexes of F_3 population exposed to 700, 900, 1100 and 1300 rad treatment showed insignificant difference in adult life span than their corresponding check populations (P<0.02, 0.05).

- Survival rates of the irradited males and females from F_5 population showed no significant effect at all tested doses except at 1300 rad population, where the longevity of both treated sexes was significantly shorter than the check population (P<0.02).
- The longevity of both sexes of F_8 population increased more than the check group at a lower dose of 700, 900 and 1100 rad. This increase as significant (P<0.02, 0.05) while life span of males and females derived from 900 and 1100 rad populations showed a significant reduction than control ones (P<0.05).
- Longevity test for F_{11} population indicate a remarkable significant reduction on the adult life span of both sexes as compared to their corresponding check population for 700 and 900 rad treatments (P<0.02, 0.05).
- * The longevity of both males and females of F_{14} population showed significant decrease from check group (P<0.02 , 0.05).
- * Tables (3,4,5,6,7 and 8) and Figures (5 to 16) indicate the effect of chronic exposure of gamma radiation on the survival rates.

- Survival rates of both sexes were highly affected by chronic irradiation through successive generations.
- * There was a significant increase in the mortality rates of both sexes (P<0.02, 0.05).
- * There was a difference in mortality rates between irradiated and nonirradiated populations, however, this difference was comparatively small

3- Fecundity:

The effect of gamma irradiation on the fecundity of adult females was tested. The obtained results are tabulated in table (9) as well as graphically illustrated in fig. (17).

Results in table (9) indicate the following:

- a- Fecundity was affected by the exposure to gamma radiation.
- b— The effect of gamma irradiation was extended to different generations.
- c- There is a correlation between the radiation dose and their response of fecundity.

Table (9): Rate of egg laying of sequently irradiated populations of Musca domestical L. females (expressed as No. of eggs /o/day).

Generation		Control	;	Doses - Rads	!	
Number		W ean ± 5.D.	/00 Mean ± S.D.	900 Mean ± S.D.	1100 Mean ± S.D.	1300 Mean <u>+</u> S.D.
7 1	1.	5.77 ± 0.3512	6.93 ± 0.3014	6.31 ± 0.4011	6.81 + 0.1181	2.47 + 0.0764
E E		5.83 + 0.1732	4.64 + 0.5943	6.43 ± 0.2805	5.59 ± 0.2618	3.88 + 0.2883
LS LL		5.43 ± 0.2060	4.64 ± 0.1931	6.21 ± 0.2252	6.13 ± 0.4512	2.29 ± 0.2205
&		5.83 + 0.2042	4.32 ± 0.200	3.80 ± 0.1562	3.3. ± 0.1732	0.0
F11		5.53 ± 0.2082	3.47 ± 0.252	2.70 ± 0.5292	0.0	0.0
F14		6.33 ± 0.1578	3.20 ± 0.360	2.60 ± 0.1000	0.0	0 . 0

:

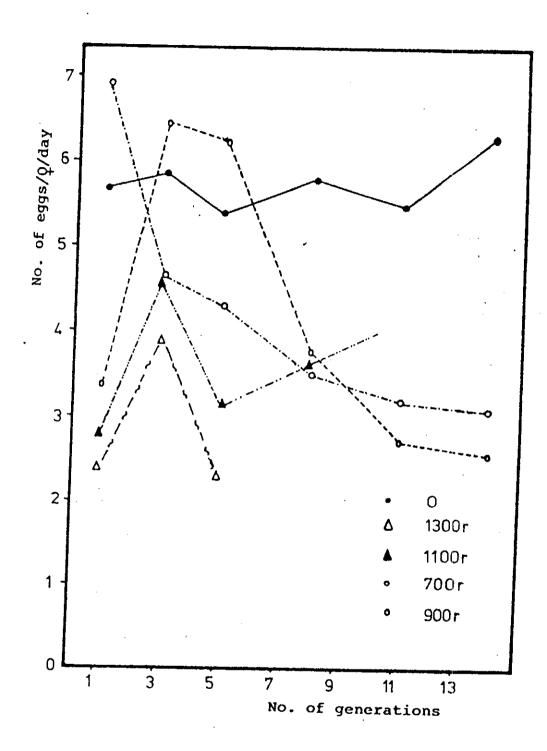


Fig. (17): Effects of chronic irradiation on rate of egg laying of <u>Musca domestica</u> L. females sequentially irradiated in ancestor generations.

These results can be explained as follow:

- * Treatment with 700 rad in the first generation stimulated egg production. This observation was also true for 900 and 1100 rad traetments, but 1300 rad treatment decreased the number of eggs laid by irradiated females.
- * Treatment with 700 and 900 rad slightly affect the fecundity throughout the first seven generations, i.e. females were continued fecund till F7.
- * Maximum stimulation of rate of egg production was shown in F_1 population treated with 700 rad, followed by complete sterility of F_{10} females.
- * Sterility in the irradiated females appeared among females of the F_{11} population when treated with 1100 rad.
- * A significant decrease in the fecundity of 1300 rad population was observed at the first six generations only, followed by complete sterility of the 7th generation.
- * It appears that the radiation selected population of M. domestica L. developes no resistance to chronic irradiation.
- * The results proved that chronic irradiation affect vittilogensis and protein synthesis in female

reproductive system, i.e. the females fail to develop mature occytes due to the effect of chronic irradiation.

4- Pertility:

The effect of gamma irradiation on fertility of adult M. domestica L. was investigated. The results of fertility experiment are tabulated in table (10).

Results in table (10) indicate that:

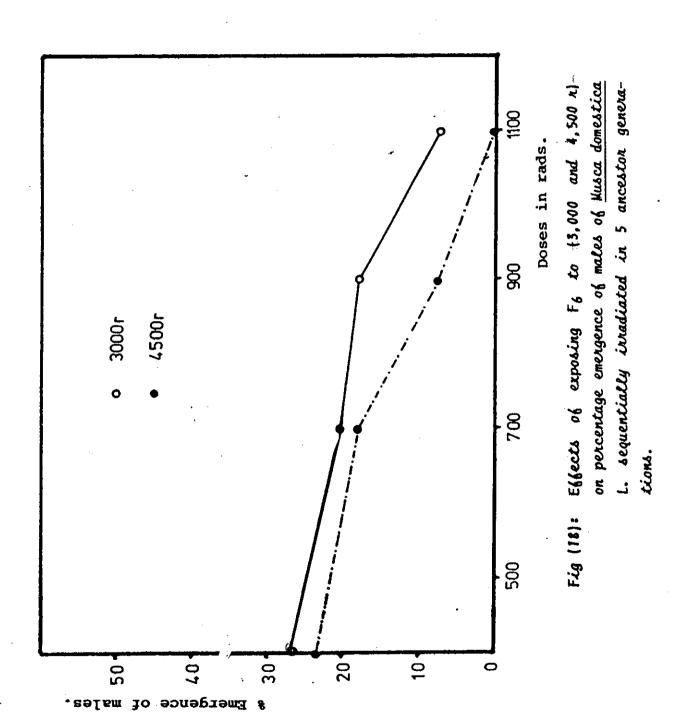
- 1- Fertility of deposited eggs by females produced from populations irradiated for successive generations was adversly affected by chronic irradiation.
- 2- There was a highly significant reduction in egg hatchability with the increase of dose through successive generations (P<0.02, 0.05) i.e. the fertility was affected as the number of generations of selection was increased and when the dose level increased.
- 3- Fertility of irradiated populations was less than their corresponding controls in the non irradiated populations.

Fertility of sequantly irradiated populations of Musca domestica L. (expressed as % hatch). Table (10):

Generation	Control	Ş	Doses - Rads	Rads	1300
Number	Mean + S.D.	/w Mean <u>+</u> S.D.	Mean + S.D.	Hean + 5.0.	Mean + S.D.
.	88.11 ± 0.1905	26.09 ± 0.6565	22.38 ± 0.7974 21.057 ± 1.34	21.057 ± 1.34	10.05 ± 0.5021
м ш	88.32 ± 1.2322	32 ± 1.2322 25.01 ± 0.9250 20.09 ± 1.0785 17.400 ± 0.5624 7.230 ± 0.3610	20.09 ± 1.0785	17.400 + 0.5624	1 7.230 ± 0.3610
F.	87.13 ± 0.4371	13 ± 0.4371 24.83 ± 0.2427 19.70 ± 0.7646 14.500 ± 0.9644 5.630 ± 0.2722	19.70 ± 0.7646	14.500 ± 0.9644	4 5.630 ± 0.2722
د	88.12 ± 0.3863	$.12 \pm 0.3863$ 22.40 ± 0.7000 16.64 ± 1.6170 13.110 ± 0.4000	16.64 ± 1.6170	13.110 ± 0.400	0.0
F11	88.30 ± 0.2082	.30 ± 0.2082 18.23 ± 1.2055 13.60 ±1.2055	13.60 +1.2055	0.0	0.0
F14	87.30 ± 1.0144	.30 + 1.0144 15.20 + 1.0149 10.23 + 0.9018	10.23 ± 0.9018	0.0	0.0

B- Meansurments of radiosensitivity of M. domestica L. exposed to substerilizing doses of gamma radiation for five and eleven generation:

The following experiment was carried out to study the possibility of developing radioresistance in selected populations of <u>M</u>. <u>domestica</u> L., irradiated in ancestral generations (five and eleven generations) and then exposed to additional acute doses of 3000 or 4500 rad.


Average percentage of adult emergence and sex ratio were calculated. Adult mortality, number of eggs laid per female per day and egg hatchability were also calculated. Statistical analysis for results took place. Evidence of difference between selected and control strain was estimated.

- 1- Effect of two additional acute doses of 3000 or 4500 rad on adult emergence, sex ratio, adult longevity, fecundity and fertility of \mathbf{F}_6 population
- a- Adult emergence and sex ratio:

The effect of acute exposure of gamma radiation on the adult emergence and sex ratio was tested. The results obtained are tabulated in table (11) and graphically illustrated in (figs. 18 and 19).

Effect of the souts dose of 3,800 and 4,500 red on percentage of adult emergence, sex ratio and longevity of the adults of the irrediated selected population (Fg) of Musce demestics L. Table (111):

Treatment during	Treatment during Treantent in the		Adult seergence		Aver	Average % sex ratio	•	Average adult longevity	: longevity
generation	rade radion	No. of No. o	No. of serios	No. of emerged Average 5 of adult	X of Males	X of Males X of females 6 : 0	0,0	·0·8 +1	
Pede		eednd	edulte	emergence + 8.0.	. e.D.	÷ 6.0.	+	# jos	Forelies
Control	Control	200	376	88.00+0.000	44.0+0.00	44.0+0.00	==	19.43-1,3051 20,53-0,5850	20.53+0.5859
Control	3000	214	130	60.75-0.7635	25.42+4.041	35.33+1.235	1:1.380	1:1.389 26.17+0.9504 26.97+1.2583	26.07+1.2583
.pesodxe.	4500	207	9	46.38+2.0817	23.38+1.547	22.92+0.976	1:0.08	1:0.08 25.3+0.2560 26.30+1.3540	26.30+1.3540
700	3600	202	# 00	41.56+2.8870	21.25-1.5276	21.25+1.5276 20.33+0.1532 1:0.057 24.77+1.8450 23.43+1.2662	1:0.057	24.77+1.8450	23.43+1.2662
	4500	60	11	35.65-2.5170	17.86-1.5275	17.86-1.5276 17.99-1.259 1:1.007 23.00-1.2730 23.50-1.5700	1:1.007	23.00+1.2730	23.50+1.5700
908	3000	222	ē	36.46+2.8870	18.49+1.534	18.00-1.021	1:0.073	1:0.873 23.87+1.7054 23.93+1.4190	23.93+1.4190
	4500	223	80	14.6+3.0550	7.47-1.527	7.33+0.676	1:0.081	1:0.081 23.2+1.573	24.4+2.56
1100	3000	210	.	14.76+3.0550	7.1-1.00	7.66-0.537	1:1.079	7.86+0.537 1:1.079 9.00+1.5670 10.72+2.577	10.72-2.577
	4500	207	0.0	0.0	0.0	0.0	,	0.0	0.0

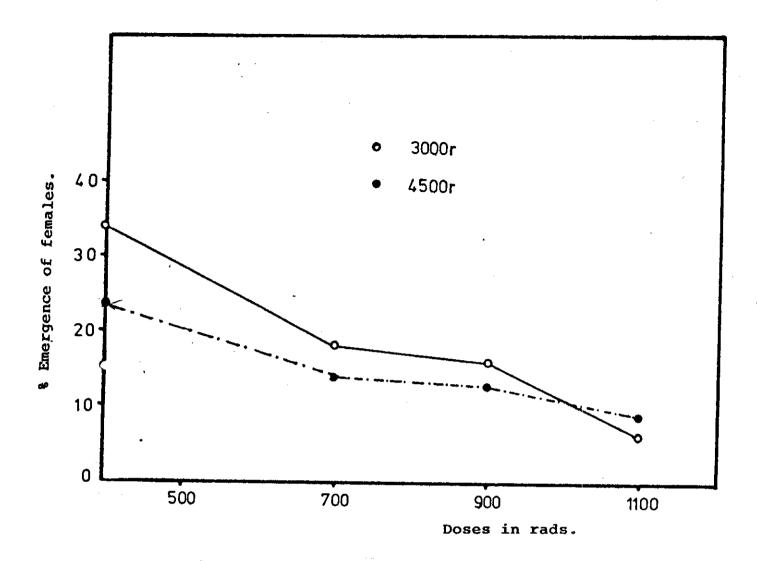


Fig (19): Effects of exposing F₆ to (3,000 and 4,500 r)—on percentage emergence of females of <u>Musca domestica</u> L. sequentially irradiated in 5 ancestor generations.

Results in table (11) show that:

- * Laboratory observations gave the conclusion that adult emergence was severely affected by acute additional dose.
- Results tabulated in table (11) indicated that irradiation of pupae derived from populations previously irradiated and exposed to an additional acute dose of 3000 or 4500 rad had no effect on sex ratio of all populations.
- * Table (11) indicated that all populaitons recieved 3000 or 4500 showed a significant decrease in percentage of adult emergence as compared with controls (P<0.02, 0.05).
- * Also control exposed "o" population showed a significant decrease in percentage of adult emergence (P<0.02, 0.05) when exposed to the acute doses.
- In case of 700, 900 and 1100 rad populations, results indicate a large devition in percent of adult emergence than their corresponding controls (P<0.02, 0.05).

b- Adult longevity:

Effect of acute dose of 3000 and 4500 rad on adult life span of irradiated selected population of $\underline{\mathsf{M}}$. domestica L. was observed and calculated. Results obtained

were tabulated in table (11) and grophically illustrated in (Figs. 20 and 21). The average survival rates were graphically illustrated in tables (12 and 13) and (Figs. 22, 23, 24 and 25).

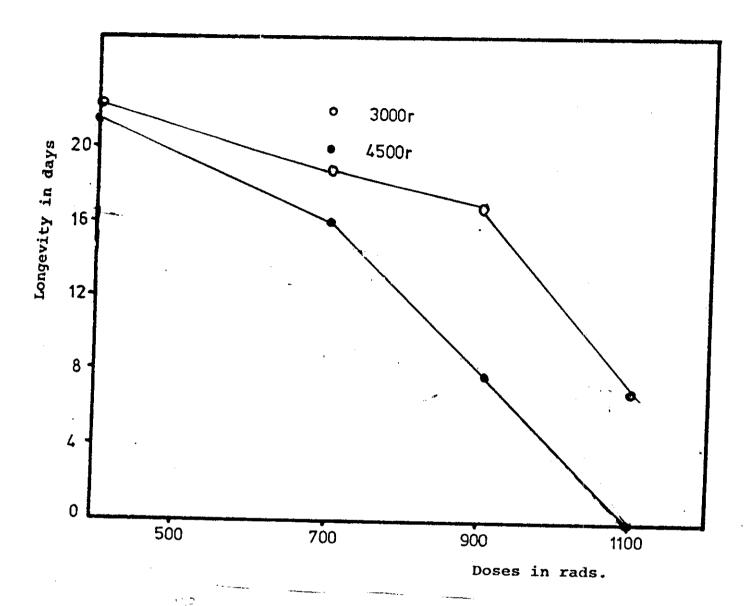


Fig (20): Effects of exposing F₆ to (3,000 r and 4,500 r) on longevity of males of <u>Nusca domestica</u> L. sequentially irradiated in 5 ancestor generations.

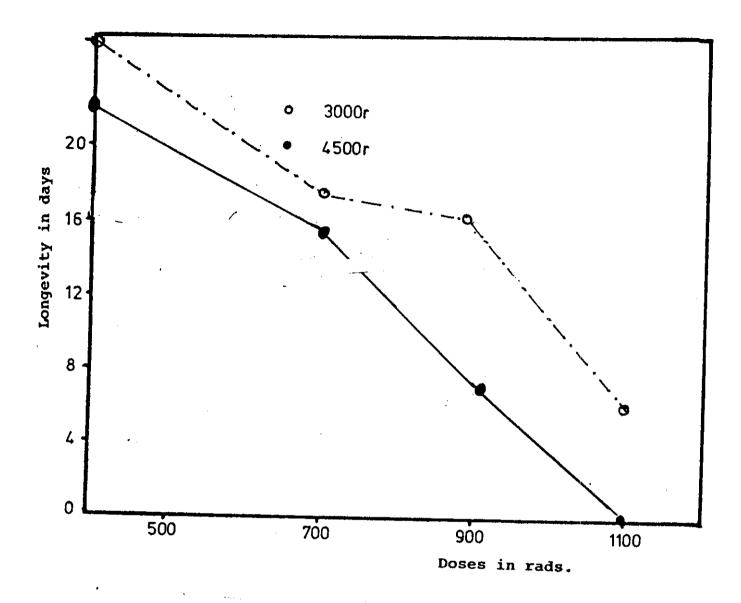
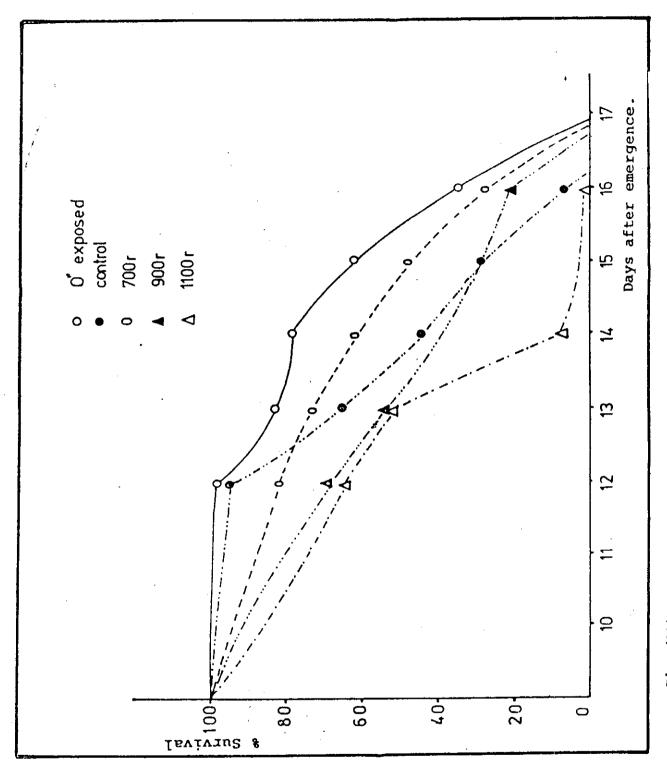



Fig (21): Effects of exposing F₆ to (3,000 and 4,500 r) on longevity of females of <u>Musca domestica</u> L. sequentially irradiated in 5 ancestor generations.

Mean + S.D. 42 ± 1.5671 40 ± 0.3621 35 ± 1.5813 33 ± 0.7821 18 ± 0.1365 17 ± 1.0123 5 ± 1.3512 \pm 0.5671 domestica 0.0 0.0 Effect of exposing F6 to 4500 rad on the percentage survival rate of M. 24.5 ± 0.4712 Mean + S.D. 63 ± 1.5312 6.5 ± 0.0321 64 ± 0.1571 55 ± 0.8213 56 ± 0.2718 23 ± 1.5371 5 ± 0.1352 0.0 0.0 Mean + S.D. 78 ± 1.6521 76 ± 0.1721 53 ± 1.3541 26 ± 0.1672 54 ± 0.2731 25 ± 0.3241 10 ± 1.6587 10 ± 0.1562 L. sequentially irradiated in 5 ancestor generations. - Rads 0.0 0.0 Doses Control exposed Mean + S.D. 90 ± 1.3561 \pm 0.7823 ± 1.4571 \pm 0.3456 \pm 1.3721 37 ± 0.2471 16 ± 1.5362 ± 0.3561 0.0 0.0 88 71 70 38 18 Mean + S.D. 0.0 ± 0.5671 72 ± 1.3567 \pm 0.6723 + 0.9821 45 ± 1.3672 15 ± 0.5861 ± 1.6731 Control 0.0 0.0 0.0 71 45 14 **Female** Female Female **Fenale** Female Male Male Male Sex Male Male Table (12): Days after emergence 12 14 15 91

domestica Effect of exposing P_6 to 4500 rad on the percentage survival rate of \underline{M} . L. sequentially irradiated in 5 ancestor generations. Table (13):

Days after emergence	Sex		Doses	- Rads		
		Control	Control exposed	700	006	1100
		Mean + S.D	Mean + S.D	Mean + S.D	Mean + S.D	Mean + S.D
12	Male	98 + 1.532	100 + 1.3541	84 ± 1.3560	72 + 1.5621	1 0
	Female	88 + 0.563	75 ± 0.2760	85 ± 0.2730		+1
13	Male	67 + 0.567	85 ± 1.3572	75 ± 1.5671	55 ± 1.3720	53 + 0,5631
	Female	860 + 0.678	82 ± 0.2782	70 ± 0.6215	55 ± 0.5631	+1
14	Male	50 ± 1.356	80 ± 1.8631	65 ± 0.1561	42 + 1.2561	10 + 0.1561
	Female	40 ± 0.278	60 + 0.7891	48 ± 1.3721	50 ± 0.2731	+
15	Male	33 ± 0.573	65 ± 1.2304	50 ± 0.5672	25 + 1.5621	55 + 0.2731
	Female	25 + 1.452	53 ± 0.5671	40 ± 0.3721	38 ± 0.7531	 +
16	Male	10 ± 0.371	40 + 1.7283	31 ± 0.1562	0.0	0.0
	Female	0.0	18 ± 0.1562	0.0	0.0	0.0

Pig. (22): Effects of exposing P_6 to 3,000 (r) on the percentage survival rate of Musca domestica L. males sequentially irradiated in 5 ancestor generations.

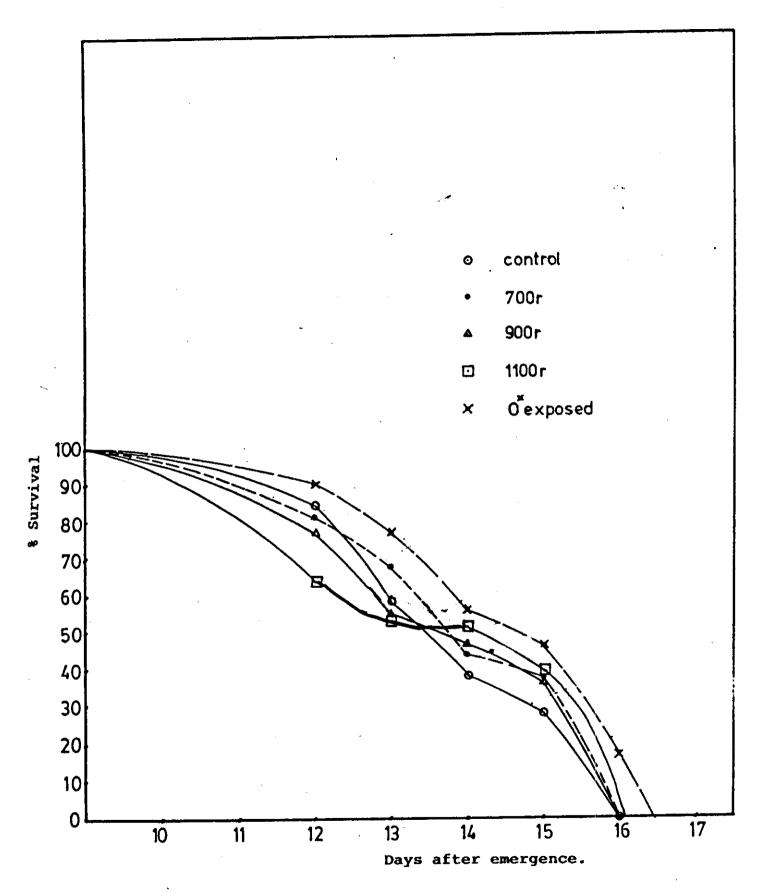


Fig (23): Effects of exposing F₆ to 3,000 (r) on the percentage survival rate of <u>Musca</u> L. females sequentially irradiated in 5 ancestor generations.

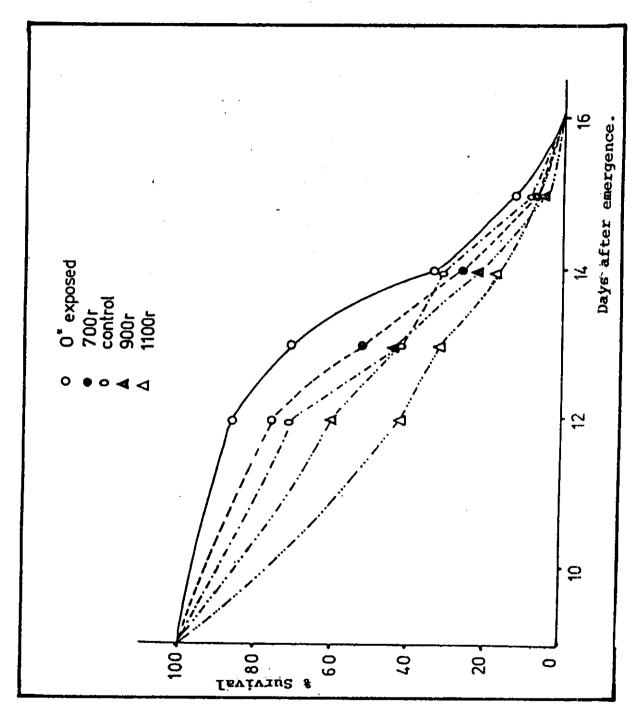


Fig (24): Effects of exposing F6 to 4,500 (n) on the percentage survival rate of Wusca domestica L. males sequentially irradiated in 5 ancestor generations.

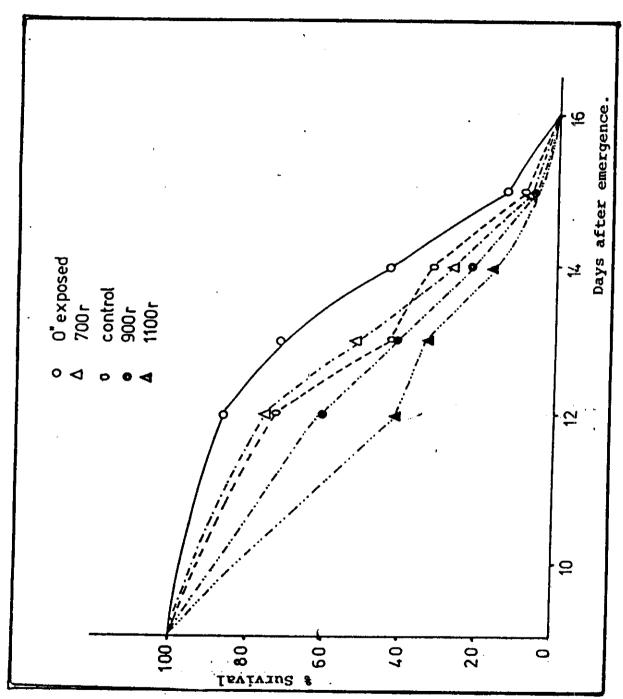


Fig (25): Effects of exposing F_{δ} to 4,500 (x) on the percentage sequentially inradiated in 5 ancestor generations. butvival rate of Hubea domestica L.

Data obtained in table (11) indicate the following:

- 1- Adult longevity has been affected by acute exposure to gamma radiation (3000 or 4500 rad).
- 2- Populations of M. domestica L. treated in ancestor generations and exposed to 3000 rad in F_6 as acute dose showed clear shortening effect on the life span of the emerging adults.
- 3- There was a correlation between the radiation substerilizing dose and the response of adult longevity.
- The results indicated that there might be a relationship between egg laying and female longevity, while laboratory observations showed that the higher the longevity of females, the lower the number of eggs laid, and females which lived longer laid no eggs.
- Radiation had a certain effect on ovarian development by damaging the ovarian nurse cells of the female as a result of reducing pupal fat body histolysis.
- * Table (11) indicated that population of "o" exposed recieved 3000 rad as acute dose showed a maximum increase in adult longevity (26.97±0.2583 and 26.17±0.9504 days) for both male and female, respectively.

- In 700 and 900 rad populations when exposed to 3000 rad as acute dose showed an observable significant increase of adult longevity of both male and female (P<0.02 , 0.05)), comparable with the untreated flies.
- * 1100 rad populations recieved 3000 rad as acute dose showed distincit decrease in adult longevity (9.0+1.567 and 16.72+0.2577 days) for both male and female respectively.
- * When all populations recieved 4500 rad as acute dose a high significant increase in males and females longevity was also observed (P<0.02, 0.05).

C- Fecundity and fertility:

The effect of acute dose of 3000 or 4500 rad on the fecundity and fertility of F_6 population of irradiated selected popultion of \underline{M} . domestica L. was tested. Results were tabulated in table (14) and graphically illustrated in (Figs. 26 and 27).

Table (14): Effect of acute dose of 3000, 4500 rad on adult rate of egg laying and fertility of irradiated selected population (F_6) of Musca domestica L.

Treatment during B generations rads	Treatment in the <u>6.th</u> generation rads	Average No. of eggs/0/ day	No. of eggs tested	No. of eggs hatched	Aver. % hatch
Control	control	6.30 <u>+</u> 0.3570	63	54	85.77+0.3215
Control	3000	7.11 <u>+</u> 0.2816	59	21	35.40+0.2730
exposed "o"	4500	6.11+1.3540	81	14	17.20 <u>+</u> 1.3560
700	3000	5.50 <u>+</u> 0.2646	72	11	15.80+1.1015
	4500	3.40 <u>+</u> 1.3560	83	7	8.40+0.2570
900	3000	3.10+0.4328	69	4	5.80+1.0000
	4500	2.40+0.5730	80	2	2.50 <u>+</u> 0.2730
1100	3000	1.11 <u>+</u> 0.1386	0.0	0.0	0.0
	4500	0.0	0.0	0.0	0.0 0.0

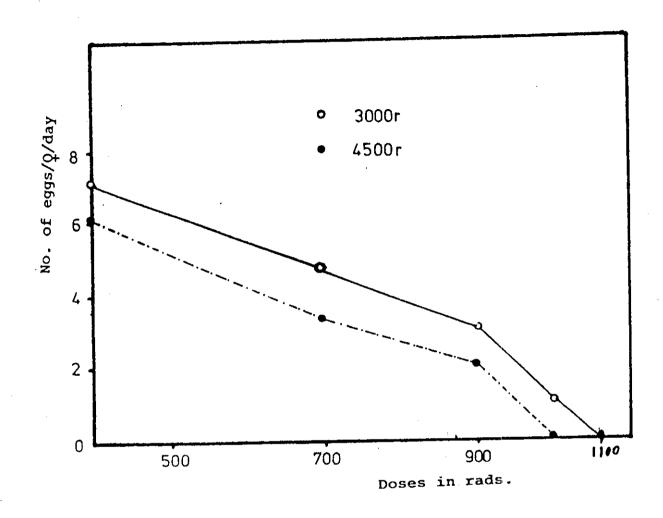


Fig. (26): Effects of exposing F₆ to (3,000 and 4,500 r) on the rate of egg laying of females of <u>Musca domestica</u>

L. sequentially irradiated in 5 ancestor generations.

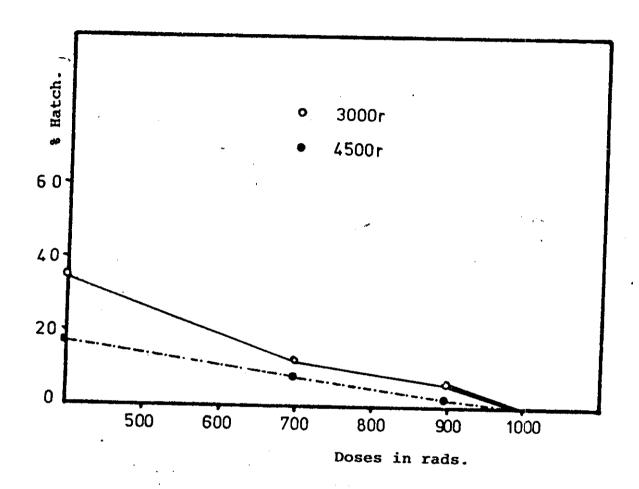


Fig (27): Effects of exposing F₆ to (3,000 and 4,500 r) on the fertility of <u>Nusca domestica</u> L. sequentially irradiated in 5 ancestor generations.

Results in table (14) illustrated the following:

- * Fecundity has been affected by acute exposure of gamma radiation.
- * Acute dose 3000 rad when applied to the control group stimulated the egg production.
- Populations which treated successively with chronic irradiation doses and then offered an acute dose showed a negative response of fecundity and fertility.

Data in table (14) and fig. (27) indicated the following:

- There was a significant reduction in the number of eggs laid by females emerged from pupae successively irradiated with 700, 900 and 1100 rad for 5 generations and 3000 or 4500 rad as acute doses in the sixth generation.
- on the other hand, the number of eggs laid by females emerging from pupae "o" exposed and then offered 3000 rad was higher than their corresponding controls i.e. it was 7.11+0.2816, 6.11+1.3540 for the "o" exposed to 3000 or 4500 rad respectively while it was 6.3+0.357 for control group.

Also table (14) and fig. (28) indicated that:

- Fertility was also affected by acute doses of 3000 and 4500 rad. Fertility of the irradiated selected populations was reduced. A remarkable decrease in the average of percentage hatch was observed, i.e the average percentage hatch was 85.77±0.3215%, 35.4±6.273%, 17.2±1.356% for control unexposed and control "o" exposed to 3000 or 4500 rad, respectively. Females treated previously with 1100 rad and 4500 rad as acute doses showed complete sterility.
- 2- Effect of two additional acute doses of 3000 or 4500 rad on adult emergence, sex ratio, adult longevity, fecundity and fertility of the P_{12} population

a- Adult emergence and sex ratio:

Effect of acute gamma exposure on the adult emergence and sex ratio of F_{12} population when treated previously for successive eleven generations to 700 and 900 rad was investigated. Data obtained was tabulated in table (15).

Table (15): Effect of the soute dose of 3,000 and 4,500 rad on percentage of adult emergence, sex ratio and longevity of the irrediated selected population (F_{12}) of Musca domestica L. (in days).

Treatment during	Treatment during Treemtent in the lat-lith	Av	Average Adult emergence + 5.0.	rgence + 8.0.	Ave	Average sex retio	Average adult lancesive
generation rads	• P	No. of pupas	No. of emerged adults	No. of emerged Average X of edult X Meles sdults emergence + 8.D.	7 X 10 0 0	Y fomelos sex ratio	+ S.D.
Control	Cantro 1	9 -	- - - -	82,14+1.2503	41.8+1.365	40.34.0.02 1:0.387 22	1:0.307 22.27+0.7572 24.77+0.5770
Control	3000	1 2 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	. 6 . 6	31.82+0.557	16.33-0.4163	16.33+0.4163 18.85+0.8644 1:1.032 28.80+1.3923 28.80+0.2824 15.7+0.5508 16.12+0.3215 1:1.028 28.50+0.2528 28.50+0.5510	18.85+0.9844 1:1.032 28.80+1.3923 28.90+0.2824
0 0 6	3000	209	35 56 76	15,3+1,2014	7.7-3.3606		7.55+0.8505 1:0.9881 27.17+0.8074 27.03+1.5948 5.8+1.0586 1:0.908 28.8+0.4183 28.8+0.3512
9 ·	0000 st	231	21 12	9.10.0.5568 5.85-0.6807	4.46 <u>-6.4163</u> 2.7 <u>+6.4510</u>		4.63+0.1528 1:0.963 18.40+0.8032 28.77+0.5773 3.15+0.2310 1:1.167 23.86+0.3215 25.20+0.1000

Results in table (15) indicated the following:

- * All population showed highly significant (P<0.02, 0.05) reduction in adult emergence than their corresponding controls.
- Exposure of pupae resulting from adults successively treated for eleven generations to 700 and 900 rad and then exposed to an additional acute dose of 3000 or 4500 rad showed no significant (P<0.02, 0.05) effect on the sex ratio when compared with controls. No difference in sex ratio was also shown in "o" exposed when compared with 700 and 900 rad populations.

b- Adult longevity:

The effect of acute exposure of gamma radiation on the adult life span of F_{12} population (treated previously with 700 and 900 rad and offered an acute dose of 3000 or 4500 rad) was tested. The obtained results were tabulated in table (15).

Tabulated results in table (15) indicated the following:

Both males and females from the irradiated selected populations (exposed to an acute dose of 3000 or 4500 rad) survived significantly longer than their corresponding control ones, i.e males and females from the irradiated selected populations die at significant slower rate than males and females of the non irradiated population.

Data obtained in table (15) showed that:

- * The control population lived significantly shorter than the "o" irradiated populations. Male survival periods of "o" exposed and 700 rad populations when offered 3000 rad was 28.6±1.3923 and 27.17±0.9074 days, respectively while it was 16.4±0.6032 days for 900 rad population.
- * The mean survival periods for control population was 22.27+0.7572 days.
- At 4500 rad tratment, the same conclusion was observed i.e. the mean survival periods were 26.50+0.252, 28.60+4163 and 23.86+0.3215 days for "o" exposed, 700 and 900 rad populations, respectively (P<0.01, 0.02).
- * Female populations for all treatment ("o" exposed, 700 and 900 rad) when offered 3000 or 4500 rad,

lived significantly longer than the females of normal populations (P<0.02 , 0.05).

C- Fecundity and fertility:

The effect of acute dose of 3000 or 4500 rad on the fecundity and fertility of F_{12} population was tested. Data were tabulated in table (16).

Table (16): Effect of dose of 3000, 4500 rad on adult rate of egg laying and fertility of irradiated selected population (F_{12}) of <u>Musca domestica</u> L.

Treatment during 11 generations rads	Treatment in the 12th generation rads	Average No. of eggs/0/ day	No. of eggs tested	No. of eggs hatched	Aver. % hatch <u>+</u> S.D.
Control	Control	5.47 <u>+</u> 0.2401	50	42	84.00 <u>+</u> 1.0967
Control	3000	6.80 <u>+</u> 0.6557	63	8	12.70 <u>+</u> 0.5132
exposed "o"	4500	6.10+0.2646	82	0.0	0.0
700	3000	4.47 <u>+</u> 0.5508	67	31	4.63 <u>+</u> 0.2517
	4500	3.30 <u>+</u> 0.1000	72	0.0	0.0
900	3000	2.53+0.3214	53	0.0	0.0
	4500	0.0	0.0	0.0	0.0

Results represented in table (16) indicated the following:

- Data showed a high significant reduction in the average number of eggs laid by females (P<0.02, 0.05).
- It was also apparent that the fecundity of the females of 900 rad population reached its minimum value (2.53±6.3214 eggs/Q/day) as compared with control (5.47±0.2401 eggs/Q/day).
- * Statistical analysis showed a high reduction in the average percentage of egg hatch. This reduction was correlated with the dose received in ancestor generations and, on the other hand, with the acute dose of 4500 rad being the sterilizing dose of M. domestica L.
- Exposure of F_{12} population irradiated in ancestor generations to 900 rad and offered 3000 or 4500 rad showed complete sterility.
- In an attempt to evaluate the effect of acute exposure, results concluded that exposure of selected population to an additional acute dose of 3000 or 4500 rad could not increase the radioresistance in fecundity and fertility as number of generations of the selection increased.

C- The effect of acute dose of gamma irradiation on sexual competitiveness of M. domestica L.:

A major problem in using irradiation to sterilize insects for sterile insect release programmes is that irradiation may debilitate the insects to an extent, that they no longer compete with native insects for mates. Thus, irradiated insects that are to be used in such programmes must be tested for sexual competitiveness.

I- Mating competitiveness of irradiated males mated with normal females:

Objective:

The present experiments were planned to clear out the following aspects:

The effect of acute sterilizing doses of gamma radiation on the competitiveness value of \underline{M} . domestica \underline{L} . males resulting from previously exposed potential strain to substerilizing doses for several generations.

a- Mating competitiveness of P₇ males:

The effect of acute exposure of gamma radiation on the mating competitiveness of F_7 males was investigated. The obtained results are tabulated in table (17).

Sexual competitiveness of Musca domestica L. males treated successively with substerilizing doses of gamma radiation for 6 generations and subjected to acute gamma exposures of 3000 , 4500 rad in 7<u>th</u>. generation. Table (17):

Treatment	Treatment	Competition		Ave	Average % hatch after	tch after			Š	Competitiveness	88
during <u>pater</u> in <u>7th.</u> nal 6th.	fn 7 <u>th.</u> generation	ratio	1st. week	ek	2 <u>nd</u> . week	*	3rd. week	*	· ×	values after	Ŀ.
generation	(rads)	107.NØ:Ng	Obser.	Exp.	Obser.	Exp.	Observ.	Exp.	Ist.	je je	ği ğ
control		0:1:1	80.10	ł	81.20	! !	80.90	:			
7	000	1:0:1	18.10	49.10	19.40	50.30	18.80	49.85			
reated Control	2000	1:1:1	52.10	66.10	55.10	68.15	54.80	67.65	0.82	0.64	0.71
0		1:0:1	13.30	46.70	13.63	47.30	13.00	46.95			
	0064	1:1:1	40.40	64.75	26.90	69.10	48.00	64.45	1.00	1.56	1.41
	000	1:0:1	15.20	47.65	15.90	48.55	15.70	48.30			
200	2000	1:1:1	49.10	64.60	58.00	09.69	51.80	66.35	0.91	0.54	0.81
	4500	1:0:1	12.10	46.10	11.10	46.15	12.00	46.45			
	D06#	1:1:1	45.80	62.95	46.10	64.35	49.00	64.95	1.02	1.00	98.0
	000	1:0:1	21.50	51.30	20.60	50.90	21.00	50.95			
006	300	1:1:1	54.20	67.20	52.10	66.65	53.80	67.35	0.79	0.92	0.83
	903	1:0:1	18.00	49.10	19.00	50.10	17.80	49.35			
	900	1:1:1	47.70	63.90	49.30	65.25	48.00	64.35	1.10	1.22	1.10
	900	1:0:1	14.20	47.15	13, 30	47.25	13.90	47.40			
1100	2006	1:1:1	53, 10	99.99	6 8.30	64.75	53.70	67.30	0.69	0.94	0.68
	700	1:0:1	9.40	44.75	8.40	44.80	9.00	44.95			
	300	1:1:1	55.20	67.65	45.10	63.25	52.90	06.99	0.54	96.0	0.64

1-

On the analysis of the obtained data, the following may be pointed out

1- 3000 rad treatment:

In the seventh generation the four selected irradiated populations were less competitive than the control ones (P<0.01) during the three weeks of the experiments; and these differences were significant.

Males of the 700, 900 and 1100 rad populations were apparently less competitive than males of the control population during the three weeks and these differences were significant. The difference in hatchability was significant at (P<0.02, 0.05).

Competitiveness values of 1100 rad male population were less during the first week and high during the second week than those of "o" population (treated control). Statistical analysis showed a significant difference at (P<0.05) and (P<0.02) respectively.

From results represented in table (17) it was clear that:

When mating competitiveness of males of the four populations ("o" exposed, 700, 900 and 1100 rad) was assessed by the percentage egg hatch and the ratio used was 1:1:1 (Io:No:No). The competitiveness value during the first week was 0.82, 0.91, 0.79 and 0.96, while

it was 0.64, 0.54, 0.92 and 0.94 during the second week, but during the third week it was 0.71, 0.81, 0.83 and 0.68.

Data obtained in table (17) showed that when normal males were allowed to mate with normal females (0:1:1), the average percentage egg hatch was 80.1, 81.2 and 80.9 during the first, second and third week, respectively; while when treated males mated with normal female in the absence of normal males (1:0:1) the average of percentage hatching was 18.1, 15.2, 21.5 and 14.2 during the first week and 19.4, 15.9, 20.6 and 13.3 during the second week, while it was 18.8, 15.7, 21.0 and 13.9 during the third weeks for the treated control "o", 700, 900 and 1100 rad populations, respectively.

Results in table (17) indicated that during the first week the populations of M. domestica L. pupae previously treated for six generations with 700 rad when exposed to an acute dose of 3000 rad produced males that were less significantly (P<0.01) comptetitive than the "o" population ones.

Also at 1:1:1 ratio and for all doses the observed egg hatch of the competitive population was lower than expected, according to these results it may be assumed that competitiveness of males of \underline{M} . domestica \underline{L} . was affected by irradiation.

2- 4500 rad treatment:

Males of the four selected irradiated populations when exposed to an acute dose of 4500 rad during the seventh generation showed different competitiveness values. Males of 700 and 900 rad populations showed competitiveness values higher than males obtained from "o" populations. Statistical analysis showed a significant difference (P<0.01) in egg hatchability during the three weeks of the experiment.

While the males of 1100 rad populations showed competitiveness values less than those obtained from the "o" population (control exposed). These differences were significant during the three weeks of the experiment.

From these results it appears that exposing M.

domestica L. males to an acute dose of 4500 rad had

no effect on the viability of the sperms. So that irradiated males were able to compete with normal ones, but

when treated males (exposed to 4500 rad) mated with

normal females at all substerilizing dose the percentage

of hatching decreased, however it was less than 30%

compared with control (81.1%).

Results tabulated in table (17) indicated that:

The mating competitiveness of males of the four populations were 0.85, 1.02, 1.1 and 0.54 for the tested doses "o" exposed, 700, 900 and 1100 rad. during the first week and 0.58, 1.00, 1.2 and 0.98 during the second week, while it was 0.91, 0.86, 1.1 and 0.64 during the third week, respectively.

It has been also found that when normal males were allowed to mate with normal females (0:1:1) the average percentage egg hatch was 80.1, 81.2 and 80.9 during the first, second and third week, respectively. On the other hand at the ratio (1:0:1) the average percentage egg hatch was 13.3, 12.1, 18.0 and 8.4 during the second week while it was 13.0, 12.0, 17.8 and 9.0 during the third week for the treated control "o", 700, 900 and 1100 rad populations exposed to an acute dose of 4500 rad. At 1:1:1 for all doses the observed egg hatch of competing population was higher than expected.

The percentage of egg hatch at 4500 rad was much lower than that at 3000 rad at 1:0:1, while at 1:1:1 ratio there was a significant difference between the two acute doses although the percentage of egg hatch after exposure to 3000 rad was still higher.

b- Mating competitiveness of radiosterilized P₁₃ males:

The mating competitiveness of males treated successively with 0, 700 and 900 rad of gamma radiation for twelve generations and offered an acute dose of 3000 or 4500 rad in the thirteen generation was studied. Obtained results were tabulated in table (18).

Table [18]: Sexual competitiveness of Musca domestica L. males treated successively with substerilizing doses of gamma radiation for 12 generation and subjected to acute gamma exposures of 3000 , 4500 rad in 13th. generation.

Treatment Treatment during pater in 13th.	Treatment in 13th.	Competition ratio	1st.	, Kee	rage % ha	Average % hatch after 2nd. week	Ĕ	3rd. Week	3 -	Competitiveness values after	ness ter
generation (rads)	(rads)	iď:nď:no	Obser.	Exp.	Obser.	Exp.	Observ.	Exp.	lst. week	Pre k	že lá
control	!	 0	82.20	į	81.00	# !	83.00	ł			
Treated Control	3000	1:0:1	9.60	45.90	9.20	45.10	10.40	46.70	1.05	1.05	0.66
0	4500		9.00	45.60	9.30	45.15 64.90	9.70	46.35	0.87	0.97	0.91
700	3000	1:0:1	8.10 43.20	45.15 62.70	9.20	45.10	8.90	45.95 62.50	1,10	1.20	1.20
	4500	1 : : 1 : : 1 : 1 :	5.20	43.70	6.40	43.70	6.70 45.10	44.85 64.05	0.98	0.87	0.98
006	3000	1:0:1	7.20	43.70	7.80	44.40	6.70	44.85	0.93	0.86	0.64
	4500	1:0:1	3.40	4 2.80 65.35	3.50	42.25	3.70	43.35	0.75	0.72	0.64

1- 3000 rad treatment:

Table (18) showed that, only "0", 700 and 900 rad populations could perpetuate to the thirteen generation. The competitiveness values for "0", 700 and 900 rad populations were 1.05, 1.1 and 0.93 during the first week and 1.05, 1.2 and 0.86 during the second week; while it was 0.66, 1.2 and 0.64 during the thirds week. Such values were assessed by the percentage of egg hatching observed at 1:1:1 ratio. It appears taht males of the 700 rad population were more competitive than males of "0" population according to the number of egg hatching during the three weeks.

It has also been found that at 0:1:1 ratio the average percentage of egg hatch was 82.2, 81.0 and 83.0% during the first, second and third week; respectively. While at 1:0:1 ratio the average percentage of egg hatch was 9.6, 9.2 and 10.4%, and 8.1, 9.2 and 8.9% during the first, second and third week for the "0" treated control and 700 rad population, respectively.

For 900 rad populations, it was 7.2, 7. and 9.7 during the first, second and third week, respectively. However, all these differences are statistically significant.

2- 4500 rad treatment:

Mating competitiveness of males of the three populations "0", 700 and 900 rad offered an acute dose of 4500 rad in the thirteenth generation as assessed by the percentage egg hatch recorded for 1:1:1 ratios. The assessed competitiveness values were 0.87, 0.98 and 0.75 during the first week, 0.97, 0.87 and 0.72 during the second week, while it was 1.06, 1.0 and 0.71 during the third week.

Results represented in table (18) indicated that:

At 0:1:1 ratio the average percentage of egg hatch was 82.2, 81.0 and 83.0 during the first, second and third week, respectively. On the other hand, at 1:0:1 ratio there was a graet reduction in the average of percentage hatching (0.9, 5.2 and 3.4) during the first week and (9.3, 6.4 and 3.5) during the second week. While it was (9.7, 6.7 and 3.7) during the third week.

At 1:1:1 ratio for tested doses ("0" treated control, 700 and 900 rad) the observed egg hatching of the competing population was lower than expected ones.

Results obtained in table (18) indicated that competitiveness values increased by increasing the dose level ("0", 700 and 900 rad) for both 3000 and 4500 rad.

Emerging males from irradiated pupae at "0" and 700 rad populations were much more competitive than 900 rad male population. These differences were significant when the males were exposed to a dose of 3000 rad (P<0.05).

Results represented in table (18) showed that, at 1:0:1 ratio large numbers of eggs were laid by the normal females although the males used were irradiated with 3000 or sterilized by 4500 rad. However, in spite of this high egg production of the normal females mated with irradiated males, the percentage of egg hatchability was very low as compared with the controls. Statistical analysis showed that this reduction in egg hatchability was highly significant, while at 1:1:1 ratio females laid a smaller number of eggs than that laid by controls. Percentage of egg hatchability was slightly higher at 1:0:1 ratio, but less than control at 0:1:1 ratio.

II- Matting competitiveness of irradiated females mated with normal males:

The objective of the experiments was to extend the radiosensitivity to control the house fly M. domestica L. through exposing the 2-days old female pupae to acute dose of gamma radiation. The experiment aimed at the determination of the effect of substerilizing doses of gamma radiation on the mating competitiveness of the female population of the house fly. We are currently trying to adapt the sterile female technique to control the population of the house fly.

a- The effect of acute doses of gamma radiation on the mating competitiveness of F₇ females:

The effect of acute exposure of gamma radiation on the mating comptitiveness of F_7 females was tested. The obtained results were tabulated in tables (19, 20 and 21).

Table (19): Sexual competitiveness of Musca domestica L. females treated successively with substerilizing doses of gamma radiation for 6-generations and subjected to acute gamma exposure of 3000, 4500 rad in 7th generation. (First

Treatment during 6- generations (Rads)	Treatment during 7th gernation (Rads)	Ratio 19: No: No	Average No. of eggs/ Q /week	Average egg % infertility	Fraction of infertile eggs	Exp. % infertility	Corrected exp.% infert-	c. v.
0		0:1:1	45	19.9	0.2			
Treated 0	3000	1:0:1	16.8 24.5	77.7	0.78	48.8	35.76	•
	4500	1:0:1	12.8 24.5	54.9 54.8	0.55 0.82 0.55	50.8	33.74	1.54
700	3000	0:1:1	21.7		0.81	50.6	30 PE	1.62
	4500	1:0:1	22.4 37.1	55.9 84.7 57.8	0.58 0.85	52.3	41.60	1.40
	3000					83.8	. 00	1.39
006	4500	0:1:1 1:1:1	25.9	56.0 89.7 58.0	0.56 0.90 58	54.8	34.64	1.42
1100	3000 4500		13.3 31.5 9.1		0.91 0.54		 36.20 	1.40
		1:1:1			.57	α· ος 	32.45	1.76

Sexual Competitiveness of Musca domestica L. females treated successively with substerilizing doses of gamma radiation for 6-generations and subjected to acute gamma exposure of 3000 4500 rad in 7th constraints Table (20):

week).				acate gamma ext	to acute gamma exposure of 3000 , 4500 rad in 7th	4500 rad fn 7	generation.	(second
Treatment during 6- generations (Rads)	Treatment during 7th germation (Rads)	Ratio 19:No:No	Average No. of eggs/ 4 /week	Average egg K infertility	Fraction of infertile eggs	Exp. % infertility	Corrected exp.% infert-	c.v.
o		0:1:1	41.3	18.8	0.19			
Treated	3000	1:0:1	18.0	78.5	0.79	48 7	27 29	
•	4500	1:1:1	26.0 14.0	58.0 82.4	0.58	; ; ;	77:16	1.56
		1:1:1	27.0	0.09	0.60	9.7	35.00	1.70
700	3000	0:1:1		80.9	0.81	49.9	41,23	•
	4500	1:0:1		52.5 84.0	0.53 0.84	51.4		1.27
		1:1:1	39.2	52.0	0.52	; ; ;	41.10	1.18
006	3000	0:1:1	20.3		0.87	52.9	41.40	
	4500	0:1:1			0.54 0.89	53.9	30 20	1.31
		1:1:1	29.4	51.5	0.52	:	07:55	1.30
1100	3000	0:1:1			0.92	55.2	45.5	•
	4500	0:1:1	13.3	53.3 94.1	0.53 0.94	56.2	45.62	1.27
		7:7:7			0.56	<u> </u>	2 1	1.23

Table (21): Sexual competitiveness of Musca domestica L. females treated successively with substerilizing doses of gamma radiation for 6-generations and subjected to acute gamma exposure of 3000 , 4500 rad in 7th generation (third week).

Treatment during 6- generations (Rads)	Treatment during 7th gernation (Rads)	Ratio 10:No:No	Average No. of eggs/ Q /week	Average egg % infertility	Fraction of infertile eggs	Exp. % infertility	Corrected exp. % infert-ility	c. v.
0		0:1:1	44.1	19.1	0,19			
Treated 0	3000	1:0:1	17.5	79.8	0.80	49.5	36 33	
,	4500	1:0:1	25.9 16.1	55.1 84.6	0.55	51.9	36.65	1.52
		7:7:7	9.97	58.8	0.59			1.60
700	3000	0:1:1 1:1:1	33.6	82.9	0.83	51.0	38.16	
	4500	1:0:1	25.2	84.4	0.84	51.8	42.60	1.57
	3000	0:1:1) · · · · · · · · · · · · · · · · · · ·	. 0.63	:	:	1.49
006	4500	1:1:1 0:1:1	26.6	89.6	0.87 0.90	52.8	38.00	1.59
	3000	0:1:1		64.2	0.64	:		1.69
1100	4500	0:1:1	33.6 11.9	92.2 62.7 93.7	0.92 0.63 0.94	55.7 56.4	35.90 34.90	1.75
					0.71	:	;	1.75

Data in tables (19, 20 and 21) derived the following:

The irradiated females were fully competitive than normal ones. The house fly, M. domestica L. responded differently when irradiated as females. Fecundity of females (irradiated for 6-successive generations by substerilizing doses of 700, 900 and 1100 rad and exposed to 3000 and 4500 rad as acute doses) declined as the dose increased. Also, within treatments of either 3000 or 4500 rad, the fecundity was affected by the competition between irradiated and nonirradiated females. At any of the tested doses, when irradiated and nonirradiated females were paired together with nonirradiated males the egg production was generally lower than the control group.

The results in table (19, 20 and 21) indicated that 19.9% of the eggs in the control treatment, were infertile. Irradiation of females increased the infertility as the dose increased. During first week, at the tested doses ("0" exposed, 700, 900 and 1100 rad) the competition increased by increasing the dose of exposure and this observation was true for the acute dose exposure (3000 or 4500 rad). During second week; the reverse was true as the competitiveness values of females decreased by increasing the dose. Third week

observations showed that competitiveness values of irradiated females increased by increasing the dose of exposure.

At all doses through the three weeks, the observed egg hatch was higher than the expected ones. During the first week, the competitiveness values at 3000 rad for "0" exposed, 700, 900 and 1100 rad were 1.54, 1.4, 1.42 and 1.49, respectively; for the second week, they were 1.56, 1.27, 1.31 and 1.27 for the tested doses, respectively. Also for the third week they were 1.52, 1.57, 1.59 and 1.75, respectively, for the same doses.

For 4500 rad exposure, the competitiveness values showed an increase in "0" exposed group and 1100 rad group (1.62 and 1.76, respectively), while it was 1.39 and 1.4 for 700 and 900 rad populations, respectively.

In general, females irradiated with high doses were more competitive than those irradiated with low doses, but the difference was slight.

b- The effect acute doses of gamma radiation on mating competitiveness of F_{13} females:

Results in tables (22, 23 and 24) indicated that, during the three weeks of the experiments, in "0" exposed population competitiveness values were increased than the other tested populations of 700 and 900 rad in both acute doses of 3000 or 4500 rad.

Table (22): Sexual competitiveness of Musca domestica L. females treated successively with substerilizing doses of radiation for 12-generations and subjected to acute damma exposure of 3000 . 4500 rad in 12th monaration

week).	4.10m TOF 12-g).	enerations	week).	acute gamma ex	posure of 3000 ,	4500 rad in 1	30 , 4500 rad in 13th generation. (first	gamma (first
Treatment during 12- generations (Rads)	Treatment during 13th gernation (Rads)	Ratio 10:No:No	Average No. of eggs/ Q /week	Average egg % infertility	Fraction of infertile eggs	Exp. % infertility	Corrected exp.% infert-	c.v.
0		0:1:1	40.6	20.7	0.21			
Treated 0	3000	1:0:1		77.2	0.77	48.95	29,35	
	4500	1:0:1	7.9	52.2	0.54 0.81 0.52	50.75	29.77	1.80
200	3000	0:1:1			06.0	200	: ;	1.75
}	4500	1:0:1	25.3 15.1	47.7 91.3	0.91	56.00	35.4/ 38.98	1.30
006	3000	0:1:1			0.53 0.93	56.75	30 41	1.35
	4500	0:1:1	8.3 8.3		0.47 0.96	58.20	32.90	1.19
		•		y. v.	0.50	;		1.52

Table (23): Sexual competitiveness of Musca domestica L. females treated successively with substerilizing doses of gamma radiation for 12-generations and subjected to acute gamma exposure of 3000 , 4500 rad in 13th generation. (Second

Treatment during 12- generations (Rads)	Treatment during 13 <u>th</u> gernation (Rads)	Ratio 10:Ng:No	Average No. of eggs/ p /week	Average egg % infertility	Fraction of infertile eggs	Exp. % infertility	Corrected exp. % infert-	C. Y.
0		0:1:1	39.9	19.7	0.2			•
Treated 0	3000	1:0:1	9.8	77.9	0.78	48.80	31.13	
	4500	1:0:1	24.5 24.5	52.1 52.1	0.53 0.80 0.52	49.90	33.78	1.70
700	3000	0:1:1 1:1:1 1:0:1	15.4 34.3 16.8	90.3 51.5 92.1	0.90 0.52 0.92	55.00	39.50	1.30
006	3000	1:1:1 0:1:1	34.3	47.6 92.6	0.93	56.15	41.30 36.44	1.15
	4500	1:1:1 1:1:1	30.8 14.7 31.5	48.7 95.9 47.7	0.49 0.96 0.48	87.80	40.46	1.34
								7.10

Table (24): Sexual Competitiveness of Musca domestica L. females treated successively with substerilizing doses of gamma radiation for 12-generations and subjected to acute gamma exposure of 3000 , 4500 rad in 13th generation. (Third week).

Treatment during 12- generations (Rads)	Treatment during 13th gernation (Rads)	Ratio 10:Ng:No	Average No. of eggs/ Q /week	Average egg X infertility	Fraction of infertile eggs	Exp. \$ infertility	Corrected exp. % infert-ility	c. v.
0		0:1:1	42.7	18.5	0.19			
Treated 0	3000	1:0:1	9.1	78.5 53.7 80.5	0.79 0.54 0.81	48.5 49.5	30.54 35.36	1.75
700	3000	1:1:1 0:1:1 1:1:1 1:0:1	29.4 13.3 32.9 12.6	53.8 90.8 47.9	0.54 0.91 0.48	54.65	36.63	1.50
006	3000	1:1:1	30.1 11.2 31.5	50.6 93.1 45.9 96.8	0.51 0.93 0.46 0.97	55.80	36.63 43.18 39.00	1.38
		1:1:1	30.1	45.0	0.45	ł	:	1.15

In all treatments the expected egg hatch was higher than the observed egg hatch. Also egg production decreased by increasing the dose of exposure. Irradiated females were more effective than irradiated males in reducing the total number of progeny in the following generations. Moreover, irradiated females were found more effective in reducing the percentage egg hatch upon which judgments about relative competitiveness are usually based.