ACKNOWLEDGEMENT

I wish to express my deepest thankable gratitude and special thanks to Prof. Dr. / Mahmoud A. Mousa, Prof. of Physical Chemistry, Faculty of Science, Benha University, for his kind supervision of this thesis.

I would like to express my deepest gratitude to Prof. Dr. / Mahmoud A. Rabah, Prof. of Metallurgy Dept., Industrial Wastes Lab., the Central Metallurgical Research and Development Institute (CMRDI) for suggesting the point of research, valuable discussions and for his guides and encouragement throughout this study.

It is a pleasure to express my deepest thanks to Prof. Dr. /Ibrahim F. Hewaidy, Prof. of Metallurgy Dept., Industrial Wastes Lab., the Central Metallurgical Research and Development Institute (CMRDI) for his kind assistance and follow up this work.

CONTENTS

	Page
INTRODUCTION	1
IDENTIFICATION OF THE PROBLEM	2
AIM OF THE WORK	3
SUMMARY	4
CHAPTER 1: LITERATURE SURVEY	6
1.1 THE TYPES OF THE DRY BATTERY CELLS	6
1.1.1 Classification of Battery Cells on Term of Their Types	7
1.2 THE MARKET OF Zn-MnO ₂ DRY BATTERY CELLS	8
1.3 COMPOSITION OF THE Zn-MnO ₂ CELL	. 12
1.4 THE CHEMICAL REACTIONS INVOLVED IN THE DRY BATTERY CELLS DURING DISCHARGING	. 15
1.5 METHODS OF TREATMENTS FOR RECOVERY OF METAL- VALUES FROM SPENT BATTERIES	. 19
1.5.1 Publications Generally Unaware of Recycling Methods	. 20
1.5.2 Recovery of Zinc as a Main Component	. 22
1.5.2.1 Pyrometallurgical treatment	. 22
1.5.2.2 Hydrometallurgical treatment	27
1.5.2.3 Electrometallurgical treatment	30
1.5.3 Recovery of Manganese as a Main Component	. 31
1.5.3.1 Hydrometallurgical recovery of manganese	. 31
1.5.3.2 Electrometallurgical recovery of manganese	. 34
i- Sulfate electrolyte	34
ii- Nitrate electrolyte	35
iii- Chloride electrolyte	. 36

<i>.</i>	Page
1.5.4 Recovery the Whole Components of the Battery	36
CHAPTER 2: EXPERIMENTAL	42
2.1 MATERIALS	. 42
2.1.1 The Spent Manganese- Zinc Dry Battery Cells	. 42
2.2 CHEMICALS	. 42
2.2.1 Mineral Acids	42
2.2.2 Alkali Solutions	44
2.2.3 Other Chemicals	45
2.2.4 Indicators	46
2.2.5 Buffer Solutions	. 46
2.3 WATER	47
2.4 GASES	47
2.5 THE TEST RIG	49
2.6 DESCRIPTION OF THE METHOD	49
2.7 METHODS OF PHYSICAL AND ANALYTICAL MEASUREMENTS	59
CHAPTER 3: RESULTS	65
3.1 THE CHEMICAL COMPOSITION AND THE COMPONENTS OF ZINC- MANGANESE DRY BATTERY CELL	65
3.2 SEPARATION OF THE WATER-SOLUBLE COMPONENTS OF THE SPENT DRY BATTERY CELLS	68
3.2.1 Separation the Whole Mass of Soluble Salts from the Spent Dry Battery Cells	68
3.2.2 Recovery of the Chemical Compounds Constituting the Water-Soluble Salts (White Paste)	73
3.2.2.1 Recovery of manganese compounds	76

	Page
3.2.2.2 Recovery of zinc compounds from the residual ammonium chloride	79
3.3 RECOVERY OF ZINC METAL AND ZINC SALTS FROM THE CORRODED (SPENT)ZINC CANS	81
3.3.1 Pyrometallurgical Treatment	81
3.3.2 Preparation of Valuable Zinc Salts from the Formed Slag (Hydrometallurgical Treatment)	
3.4 SEPARATION OF Zn-MnO ₂ COMPOUNDS	. 91
3.4.1 Leaching with Alkali Solutions	94
3.4.2 Leaching with Acid Solutions	99
3.5 ELECTROCHEMICAL STUDY ON THE BLACK BATTERY PASTE	111
3.5.1 Reaction of y-Manganese Dioxide with Zinc Chloride under Normal Conditions	111
3.5.2 Reaction of γ-Manganese Dioxide with Zinc Chloride under Polarization Conditions	111
3.6 SEPARATION OF THE CARBON AND γ-MANGANESE DIOXIDE FROM THE BLACK PASTE BY FLOTATION AND MAGNETIC SEPARATION PROCESSES	1
3.7 RECOVERY OF THE REMAINING BATTERY INCLUSIONS	119
3.7.1 Recovery of Carbon Rods	119
3.7.2 Recovery of the Covering Paper	119
3.7.3 Steel Discs Treatment	119
3.8 SEPARATION OF METAL VALUES FROM THE SPENT DRY BATTERIES	120
3.8.1 From the White Paste	120
3.8.2 From the Slag of the Pyrometallurgical Recovery of Meta Zinc from the Spent Cans	
3 & 3 From the Black Paste	121

	Page
CHAPTER 4: DISCUSSION	. 123
4.1 THE CHEMICAL COMPOSITION AND THE COMPONENTS OF ZINC-MANGANESE DRY BATTERY CELLS	123
4.2 EXTRACTION OF THE WATER-SOLUBLE SALTS	128
4.3 RECOVERY OF METAL ZINC FROM THE CORRODED ZINC CANS	130
4.4 THE ZINC-MANGANESE COMPOUNDS	135
4.5 SEPARATION OF ZINC FROM THE BATTERY PASTE	137
4.6 RECOVERY OF CARBON BLACK AND γ-MANGANESE DIOXIDE FROM THE BATTERY BLACK PASTE	
4.7 THE EFFICIENCY VALUE OF THE APPLIED METHOD.	139
CONCLUSION	140
REFERENCE	141
ARABIC SUMMARY	

•