CONTENTS

	List	of	Tables	Page
	List	of	Figures	
	 Abbreviations			
	 INTRODUCT			
			LITERATURAL	1
	MATERIAL		 METHODS	6
		ion and	identification of	46
	bacteria		eria contaminated	46
	animal blood.	•••	ntenance medium	46
3.	Production of slaugh		e-basal medium	46
	(SHBM)			47
				47
5. I	dentification of bacteria	l isolates .		48

5.1. Tributyrin clearing zone technique (TCZ)	48
5.2. Gelatin clearing zone technique (GCZ)	49
5.3. Molecular characteristics	49
5.3.1. Bacterial strains, plasmid vectors and	
culture conditions	49
5.3.2. Isolation of total genomic DNA	49
5.3.3. Polymerase chain reaction (PCR)	50
a. PCR amplification of 16S rRNA	50
b. PCR amplification of lipase gene	51
c. Agarose gel electrophoresis	52
d. Cloning the 165 RNA and lipase gene.	53
	Page
d.1. Tailing and purification of amplified	
16S rRNA and lipase gene	53
d.2. Purification of PCR products	53
d.3. Legation reaction	54
d.4. Bacterial transformation	54
d.5. Conformation of recombinant	
plasmid	56
d.6. DNA sequencing	56
Part II. Enzymes production	56
1. Detection of enzymes protein	
	56
1.1. Extraction of total protein	
	56

1.3. Qualitative of protein	58
2. Assay of enzymatic activities	61
2.1. Preparation of media	61
2.2. Tributyrin clearing zone technique	63
2.3. Gelatin clearing zone technique	63
3. Production and purification of enzymes	64
3.1. lipolytic enzyme medium	64
3.1.1. Lipolytic enzyme medium	64
3.1.2. Proteolytic enzymes medium	64
4. Controlling of enzymes production	65
5. Purification of enzymes	67
6. Gas chromatographic	68
7. Stability of enzymes	69
Part III. Biotechnology of animal blood	70
A. Application of enzymes in	
detergent technology	70
1. The applied experiment	71
2. Examination of cotton cloth	71
	Page
2.1. Visual examination	71
2.2. Colour measurement	71
2.3. Whiteness and yellowness index	72
B. Production of fibrinogen	
	72
1. Determination of the clottability	72
	72 74
1. Determination of the clottability	

RESULTS	
	76
•••••	76
DISCUSSION	
	114
ENGLISH SUMMARY	
	142
REFERENCES	
	146
EPPENDEX	
ARABIC SUMMARY	

LIST OF TABLES

Table	Page
1. Designed specific primers for the PCR amplification	52
2. Preparation of SDS-PAGE gels	60
3. Enzyme producer bacterial isolates growing on animal	
blood wastes using TCZ and GCZ techniques	78
4. Morphological, physiological an biochemical character-	
ristics of bacterial isolates	79
5. Predicted amino acids composition of Lip A gene	
sequence of Ps. Fluorescens	91
6. Protein content and enzymes activities of B. cereus and	
Ps. Aeruginosa	92
7. Relationship between incubation temperatures to lipase	
and protease(s) productivities and bacterial strains	94
Table (8): Relation of microbial isolates to incubation	
period on enzymes production on animal Table (14):	
Retention time and relative percentage of free amino	
acids in the lipase and protease enzymes by a gas	
chromatography equipped with 3% OV225 glass	
column and a Hames ionization detector	95
9. Effect of initial pH values on lipase and protease	
productivities by bacterial isolates allowed to grow on	
SHBM for 48 h under submerged fermentation	
condition	96
10. Relation of substrate concentration application to lipase	
an protease production by bacterial isolates	97

Table	Page
11. Relation of different carbon sources application to	
lipase and protease productivities by bacterial, EG	
strains	98
12 Relation of different nitrogenous source application to	
lipase and protease productivities by bacterial isolates .	98
13. Ammonium sulfate precipitation pattern of the lipase	
and protease produced by Ps. fluorescens and B.	
cereus	100
14. Retention time and relative percentage of free amino	
acids in the lipase and protease enzymes by a gas	
chromatography equipped with 3% OV225 glass	
column and a Hames ionization detector	102
15. Thermostability of the purified lipase and protease	
produced by Ps. fluorescens and B. subtilis	103
16. pH stability of the purified lipase and protease	
activities	104
17. Effect of purified enzymes concentration on activities	
produced by Ps. fluorescens and B. subtilis	104
18. Effect of chlorine concentration on lipase and protease	
activities of different exposure times	106
19. Effect of oxidizing agents and surfactants on lipase	
protease activities	107
20. Destinies of lipase and protease and/or Arial detergent	
on the removing colour of the staining cloth with	
blood, salad, chocolate and oils (at 50°C)	111

LIST OF FIGURES

	Figure	Page
1.	Standard curve of the protein concentration using	
	biovine serum albuimin as standard protein	58
2.	Standard curved of Lipase and protease concentration	
	as the relation of log value of enzyme conc.	
	corresponding mean diameter of cleaning zone (mm).	62
3	A. Agarose gel, 1% stained with ethidium bromide	
	showing PCR amplification of 16S rRNA gene using	
	primers	82
	Lane M; λ DNA marker, Lane 1. P. fluorescens	
	(ATCC 1003) and Lane 2, Ps. Fluorescents EG isolate	
	expected band 1451 bp., Lane 3, B. cereus isolate	
	expected ban ~ 115 bp.	
	B. Dot blot hybridization of DNA prepared from (1)	
	Ps. Fluorescens EG.	
	(2) Ps. Fluorescens (ATCC) and 3.4.5 and 6 Ps.	
	Fluorescens isolated from animal blood with general	
	eubacterial probe	82
4.	Agarose gel 1.2% stained with ethidium bromide	
	showing plasmid minipreparation of white clones	
	containing the 16S rRNA gene fragment. (A) and	
	Lipase gene fragment (B).	
	Lane M. DNA marker	82

	Figure	Page
5.	Nucleotide sequence of the 1451 bp fragment	
	containing the Ps. Fluorescens EG 16S rRNA	
	structural gene	84
6.	Phytogenetic tree based on the 16S rRNA gene	
	sequences of Ps. Fluorescens EG strain and Ps.	
	Fluorescens spp. The branching pattern was generated	
	by the neighbor-joining method, the numbers at the	
	nods indicate the levels of boot strap support based on	
	a neighbor-joining analysis of 100 resample data sets	84
7.	Nucleotide sequence of Lip A gene of Ps. Fluorescens	
	EG strain (A) and Dendrogram showing clusters of Ps.	
	Fluorescens strain based on their nucleotide sequences	
	(B)	88
8.	Amino acid sequence of Lip A gene of Ps. Fluorescens	
	EG strain (A) Dendrogram showing clusters of	
	Pseudomonas strains based on their amino acids	
	sequences (B)	90
9.	SDS-PAGE analysis of protease and lipase expressed	
	in B. cereus and Ps. Fluorescents, Lane is located with	
	the following molecular mass standards, Lane 1,2,3,4	
	total cellular proteins from B. cereus (ATCC), B.	
	cereus EG, Ps. Fluorescens (ATCC) and Ps.	
	Fluorescens EG. Lanes 5 and 6 purified protease and	
	lipase enzymes respectively	93

.10.	
1. A: SDS-PAGE (10%) analysis of nonreduced aliquots	
from the fibrinogen precipitation steps. Lane 4 protein	
marker; Lane 3 animal blood plasma, Lane 2.	
fibrinogen fraction of the first ammonium sulphate	
precipitation, Lane 4. stained with silver nitrate, the	
second ammonium sulphate.	
B: Reduced animal blood and human fibrinogen	
precipitated from plasma at 56°C for 3 min. Laner 7.	
protein marker, Lanes (1-3) purified animal fibrinogen	
and lanes (4-6) human fibrinogen. The protein were	
stained with coomassie brilliant blue G	110

Page

Figure

ABBREVIATIONS

μl : Microlitre

16S: rRNA: 16 sedimentation- ribosomal RNA

APS : Ammonium persulfate

Asp. : Asopergillus

ATCC : American type culture collection

B :: Bacillus

BBIP : Dot-blot hybridization

BM : Basal medium bp : base pair

BPB : bromophenol blue BSA : Bovine serum albumin CBB : Coomassie brilliant blue

CFF: Cell-free-filtrate
CFF: Cell free filtrate

dATP : Dideoxy adenine triphosphatedCTP : Dioxy thiamine triphosphatedGTP : Dideoxy gewanine triphosphate

DIG : Digoxigenin

dNTPs : Dideoxy nucleotide triphosphate

E. coli : Escherichia coli

e.g. : For example (Exempligratgia)EDTA : Ethylene diamino tetra acetic acid

EG : Egyptian et al. : And other g/L : gram to liter

G+C : Geuanin + Cytosine

GCZ : Gelatine clearing zone technique GLC : Gas liquid methyl amino methane

h : hour

K/S : color strengthKb : KilobaseKDa : KiloaltonLB : base pair

Leukemia virus

M : Molar mA : Nanogram

ME : β-mercaptoethanol

Mg : Milligram

MGY : Mannitol Glutamate yeast

min: Minute

MIRCEN, Microbiological Research Center

mm : Milimeter mM : Millirnolar

MMLV: Moloney murine molecular weight MW NA Nutrient agar NB Nutrient broth Nanogram ng

NRC National Research Center

Nucleotide nt O.D. Optical ensity Open-reading fram ORF

Picomolar P mole:

Polymerase chain reaction **PCR PCR** Polymerase chain reaction

Potential hydrogen рH

PLAST: Basic local Algument search tool

Part par million Ppm Ps. Pseudomonas

Randomly amplified polymorphic DNA RAPD

Small subunit rRNA gene rDNA Recombinant plasmid RP Revolution per minuteconc. rpm

Robisomal RNA rRNA

SDS Sodium dodecyl sulphate

SH Slaughter house

SHBM Slaughter house basal medium

SHW Slaughter house wastes sRNA Small ribonucleic acid TAE Tris acetate EDTA Thermos aquatics Taq.

TCZ Tributyrin clearing zone technique TEMED: N,N,N,N, tetramethylene diamine TMP Polyactylamide gel electrophoresis

TMP Transmembrane pressure

Tri-HCl: Tris hydroxy methyl amino methane

U Unit. Ug Microgram Ultraviolet UV

V Volt

V/V Volume to volume V/W Volume to weight VP Voges-Proskauer W/V Weight to volume Weight to weight W/W

ACKNOWLEDGMENT

Praise and thanks to ALLAH SUBHAVAHV WATAALA

The most graceful and merciful for directing me the right way.

I would like to express may grateful thanks and appreciation to the nome of **Prof. Dr. Mahmoud M. Hazaa**, Prof. Of Microbiology, Botany, Department, Faculty of Science, Benha University, Cairo, Egypt for suggesting the point of research continuous support to last moment.

Many thanks to **Prof. Dr. Mohamed R. Metwally,** Prof. of Microbiology, Botany Department, Fac. of Sci., Banha University, Cairo, Egypt for his help in presenting this thesis, and help to solve all problems that faced me during the course of this work.

I feel deeply thankful to all members of Botany Department, Faculty of Science, Benha University for help in presenting this thesis, unlimited support, continuous encouragements and for hem most valuable efforts throughout the study.

I would like to express my deep and sincere gratitude to the soul of **Dr. Salah Mohamed El-Aser**, Associate Prof. of Microbiology.