Results

This study comprised 50 cases of nosocomial infection from different body sites.

Table (12) summarizes the nature of samples taken for this study & the morphology resistance/susceptibility patterns of inducible β -lactamases as detected by disk approximation technique.

Table (13) indicates the identification of isolated strains in this study, and morphological resistance/susceptibility patterns of inducible β -lactamases as detected by disk approximation technique. The most frequent producer of this type of resistance were *Morganella* (100 %), *Providencia*, (100 %), *Proteus vulgaris* (100 %), *Serratia* (83 %), *Enterobacter* (77 %), *Citrobacter* (75 %), and *Pseudomonas* (75 %) & the least producer of this type were *Klebsiella* & *E. coli*, (% respectively).

Table (14) shows the overall susceptiblity results detected by disk approximation technique. 70 % (No 35). of isolated strains showed resistance morphology types (C & D), & while 30 % (No 15) of isolated strains showed susceptible morphologies (absence of inducible β -lactamases; (S & Sl types)

Table (12)

Types of samples and susceptibility results regarding inducible β -

lactamase by disk approximation

Samples	Total	Susceptible	Percentage	Resistant	Percentage
	number		(%)		(%)
Urine	16	5	31%	11	69%
Sputum	8	1	12%	7	88%
Wound and Burn infection	9	5	55%	4	45%
Blood culture	14	3	21%	11	79%
CSF	1	0	0	1	100%
BAL	2	1	50%	1	50%

This table shows distribution of samples & susceptibility results regarding inducible β -lactamase .

There were 16 urine samples, 8 sputum samples, 9 superficial skin infection, 14 blood cultures, 1 CSF samples, & 1 Broncho-Alveolar Lavage samples.

Expression of inducible β -lactamase phenotype among different clinical varied from 45% to 100%.

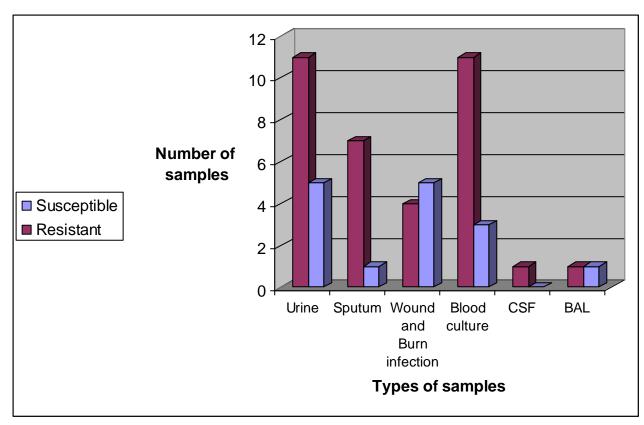


Fig. (3) Types of samples and susceptibility results regarding inducible β -lactamase by disk approximation.

This figure shows types of samples and susceptibility results regarding inducible β - lactamase by disk approximation.

Table (13)

Types of the deformity (disk approximation) of microorganism in urine samples.

No.	Type of microorganism	Deformity of disk approximation
1	E. coli	D-type
2	Citrobacter	S-type
3	Pseudomonas	D-type
4	Enterobacter	C-type
5	Enterobacter	C-type
6	Proteus mirabilis	D-type
7	Enterobacter	S-type
8	Providencia	D- type
9	Serratia	S- type
10	Enterobacter	D- type
11	Citrobacter	D- type
12	Pseudomonas	C- type
13	Klebsiella	S- type
14	Enterobacter	D- type
15	Citrobacter	C- type
16	Morganella	S- type

This table shows the bacteria species and the type of deformity (Disk approximation) in the 16 urine samples that collected, 11 (69%) were resistant (showed type D& C deformity) and 5 (31%) were susceptible (showed type S deformity).

Table (14)

Types of the deformity (disk approximation) of microorganism in sputum samples.

No.	Type of microorganism	Deformity of disk approximation
1	Pseudomonas	C- type
2	Proteus vulgaris	D- type
3	Serratia	C- type
4	Pseudomonas	C- type
5	E. coli	SL- type
6	Pseudomonas	C- type
7	Serratia	D- type
8	E. coli	C- type

This table shows the bacteria species and the type of deformity (Disk approximation) in the 8 sputum samples that collected, 7 (88%) were resistant (showed type D& C deformity) and 1 (12%) were susceptible (showed type S deformity).

Table (15)

Types of the deformity (disk approximation) of microorganism in wound burn infection samples.

No.	Type of microorganism	Deformity of disk approximation
1	Citrobacter	D-type
2	Pseudomonas	S-type
3	Providencia	D-type
4	Pseudomonas	C-type
5	Enterobacter	SL-type
6	Providencia	D-type
7	E.coli	SL-type
8	Serratia	D-type
9	Pseudomonas	SL-type

This table shows the bacteria species and the type of deformity (Disk approximation) in the 9 wound and burn infection samples that collected, 4 (45%) were resistant (showed type D& C deformity) and 5 (55%) were susceptible (showed type S deformity).

Table (16)

Types of the deformity (disk approximation) of microorganism in blood culture samples.

No.	Type of microorganism	Deformity of disk approximation
1	Klebsiella	S-type
2	Morganella	D-type
3	Morganella	D-type
4	E.coli	S-type
5	Proteus vulgaris	C-type
6	Serratia	D-type
7	Providencia	D-type
8	Morganella	D-type
9	Enterobacter	C-type
10	Serratia	D-type
11	Proteus mirabilis	D-type
12	Morganella	D-type
13	Enterobacter	C-type
14	klebsiella	S-type

This table shows the bacteria species and the type of deformity (Disk approximation) in the 14 Blood culture samples that collected, 11 (79%) were resistant (showed type D& C deformity) and 3 (21%) were susceptible (showed type S deformity).

Table(17)

Types of the deformity (disk approximation) of microorganism in CSF samples.

No.	Type of microorganism	Deformity of disk approximation		
1	Klebsiella	C-type		

This table shows the bacteria species and the type of deformity (Disk approximation) in the 1 CSF samples that collected, 1 (100%) were resistant (showed type D& C deformity) and 0 (0%) were susceptible (showed type S deformity).

Table (18)

Types of the deformity (disk approximation) of microorganism in BAL samples.

No.	Type of microorganism	Deformity of disk approximation		
1	Klebsiella	C-type		

This table shows the bacteria species and the type of deformity (Disk approximation) in the 1 BAL samples that collected, 1 (100%) were resistant (showed type D& C deformity) and 0 (0%) were susceptible (showed type S deformity).

This (19)
The number of samples .sexual and the type of samples.

No.	Patient age	Patient sex	Sample
1	32 Years	Male	Wound infection
2	50 Years	Male	Sputum
3	35 Years	Male	Urine
4	36 Years	Female	Blood culture
5	25 Years	Male	Burn infection
6	46 Years	Male	Urine
7	52 Years	Male	Urine
8	53 Years	Male	Blood culture
9	36 Years	Female	Burn infection
10	47 Years	Male	Sputum
11	59 Years	Male	BAL
12	65 Years	Male	CSF
			(postoperative meningitis)
13	45 Years	Male	Urine
14	32 Years	Male	Wound infection
15	63 Years	Female	Blood culture
16	47 Years	Male	Blood culture
17	29 Years	Male	Urine
18	40 Years	Male	BAL
19	58 Years	Female	Blood culture
20	40 Years	Male	Burn infection
21	39 Years	Female	Urine
22	57 Years	Female	Urine
23	39 Years	Male	Blood culture
24	47 Years	Male	Sputum
25	65 Years	Female	Blood culture

No.	Patient age	Patient sex	Sample
26	36 Years	Male	Urine
27	42 Years	Male	Urine
28	37 Years	Female	Sputum
29	52 Years	Male	Blood culture
30	34 Years	Male	Blood culture
31	31 Years	Male	Burn infection
32	28 Years	Male	Burn infection
33	31 Years	Male	Urine
34	48 Years	Female	Sputum
35	35 Years	Male	Urine
36	42 Years	Male	Blood culture
37	57 Years	Male	Blood culture
38	39 Years	Male	Urine
39	29 Years	Female	Wound infection
40	32 Years	Male	Blood culture
41	21 Years	Male	Blood culture
42	41 Years	Female	Sputum
43	32 Years	Male	Burn infection
44	38 Years	Male	Urine
45	25 Years	Female	Blood culture
46	51 Years	Male	Urine
47	40 Years	Male	Urine
48	21 Years	Female	Sputum
49	54 Years	Female	Urine
50	30 Years	Male	Sputum

This table showing the number of 50 samples which isolates from different patient male& female) and the types of samples were collected.

Table (20)

The type of microorganism and the diameter of disk diffusion and the minimal inhibitory concentration and the type of disk approximation.

No.	Organism	Disk diffusion diameter		MIC		Type of disk approximation
		CAZ	CRO	CAZ	CRO	<i>арргохітанон</i>
1	Enterobacter	18	21	32	64	Sl -type
2	Pseudomonas	18	23	64	128	C-type
3	E. coli	21	24	32	265	D-type
4	Morganella	20	28	64	128	D-type
5	Providencia	18	30	128	64	D-type
6	Citrobacter	24	25	64	128	S-type
7	Pseudomonas	27	26	32	256	D-type
8	Morganella	31	28	128	64	D-type
9	E. coli	91	32	64	64	S <i>l</i> -type
10	Proteus vulgaris	25	29	32	132	D-type
11	Enterobacter	23	28	64	256	C-type
12	Klebsiella	22	27	128	64	C-type
13	Enterobacter	19	26	32	32	C-type
14	Serratia	18	18	64	64	D-type
15	E. coli	19	21	32	128	S- type
16	Proteurs vulgaris	23	27	64	64	S-type
17	Enterobacter	28	29	128	128	C-type
18	Klebsiella	30	25	64	256	S-type
19	Serratia	18	24	64	64	D-type
20	Pseudomonas	21	23	32	64	Sl- type
21	Enterobacter	23	22	32	64	D –type
22	Klebsiella	25	21	128	256	S-type
23	Enterobacter	28	23	128	256	D –type
24	Serratia	29	30	64	64	C-type
25	Klebsiella	30	25	64	64	S- type

No.	Organism	Disk diffusion		MIC		Type of disk
		diameter				approximation
		CRO	CAZ	CRO	CAZ	
26	Providencia	21	28	32	64	D-type
27	Serratia	22	29	64	128	S-type
28	Pseudomonas	25	21	32	64	C-type
29	Morganella	18	21	32	128	D-type
30	Enterobacter	23	24	64	256	C-type
31	Citrobacter	21	25	64	256	D-type
32	Pseudomonas	19	25	32	128	S-type
33	Enterobacter	20	21	32	64	D-type
34	E. coli	24	23	128	64	S <i>l</i> -type
35	Citrobacter	21	24	64	128	D- type
36	Serratia	18	27	32	128	D-type
37	Proteus mirabilis	18	30	64	64	D-type
38	Pseudomonas	19	31	32	64	C- type
39	Providencia	23	21	64	256	D-type
40	Enterobacter	24	22	32	128	C-type
41	Klebsiella	25	23	32	64	S- type
42	Pseudomonas	18	21	32	64	C- type
43	Pseudomonas	18	21	128	128	D-type
44	Klebsiella	23	27	64	128	S-type
45	Morganella	19	25	32	64	D-type
46	Enterobacter	21	30	64	64	D-type
47	Citrobacter	25	31	64	128	C-type
48	Serratia	27	30	32	128	D-type
49	Morganella	18	29	32	64	C-type
50	E. coli	18	21	64	64	S <i>l</i> -type

This table showing the types of microorganisms which isolates from 50 samples of patients and the diameter of disk approximation in CAZ and CRO by the Standered Kirby Power Disk Diffusion , Minimal inhibitory Concentration in CAZ and CRO and the deformity with the disk approximation in these species.

Table (21)
The total number of patient different between male and female

Patient Age/Y	Total No.	Male	Percentage %	Female	Percentage %
20-25	2	1	50	1	50
25-30	6	4	67	2	33
30-35	7	7	100	0	0
35-40	10	6	67	4	33
40-45	6	5	83	1	17
45-50	6	5	83	1	17
50-55	6	5	83	1	17
55-60	4	2	50	2	50
60-65	1	0	0	1	50
65-70	2	1	50	1	50

This table showing the total number of 50 patients were connected different between males and females.

Table (22)
This table showed the number of Susceptibility microorganisms species and percentage according to the type of samples

Samples	No. of microorganism	Susceptible	Percentage (%)	Resistant	Percentage (%)
Urine	9	4	44%	5	56%
Sputum	5	1	20%	4	80%
Burn & Wound infection	6	2	40%	4	60%
Blood culture	8	4	50%	4	50%
CSF	1	0	0%	1	100%
BAL	1	0	0%	1	100%

This table shows the type of samples, number of microorganism species and number and percentage of susceptibility and resistance.

Table (23) $\label{eq:beta-by-lactamase} \mbox{ Detection of inducible } \beta\mbox{- lactamase by disk approximation of isolates according to identification:-}$

Organism	Total number	susceptible	Resistant
Enterobacter	9	2	7
E.coli	5	4	1
Pseudomonas	8	2	6
Morganella	5	0	5
Providencia	4	0	4
Citrobacter	4	1	3
Proteus vulgaris &Proteus mirabilis	4	1	3
Klebsiella	5	4	1
Serratia	6	1	5

This table shows the detection of inducible β - lactamase disk approximation according to isolate type. It was least expressed in *E. coli* & *Klebsiella*. While it was most expressed in *Morganella* & *Providencia* isolates.

No.of organisms susceptible/resistance 3 Susceptible

Enterobacter
Organism

Resistant

Fig. (4): shows susceptibility/resistance of inducible betalactamase for Enterobacter strains.

This figure shows susceptibility/ resistance of inducible β - lactamase for Enterobacter.

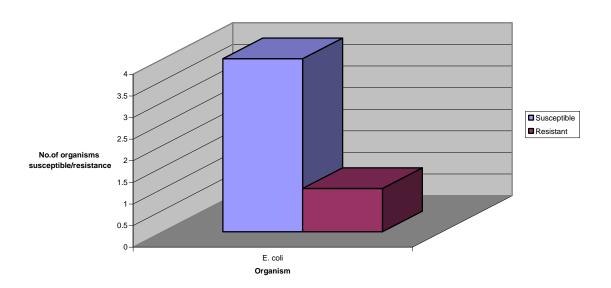


Fig. (5): shows susceptibility/resistance of inducible beta-lactamase for E. coli strains.

This figure shows susceptibility/ resistance of inducible β - lactamase for E.coli.

No.of organisms susceptible/resistance 2
Pseudomonas
Organism

Fig. (6): shows susceptibility/resistance of inducible betalactamase for Pseudomonas strains.

This figure shows susceptibility/ resistance of inducible β - lactamase for Pseudomonas.

Fig. (7): shows susceptibility/resistance of inducible beta-lactamase for Morganella strains.

This figure shows susceptibility/ resistance of inducible β - lactamase for Morganella.

No.of organisms
susceptible/resistance

1.5

1

O.5

Organism

Providencia
Organism

Fig. (8): shows susceptibility/resistance of inducible beta-lactamase for Providencia strains.

This figure shows susceptibility/ resistance of inducible β - lactamase for Providencia.

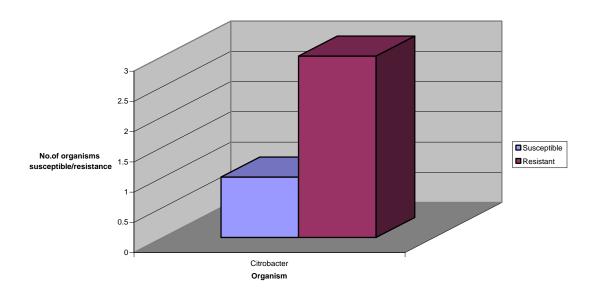


Fig. (9): shows susceptibility/resistance of inducible beta-lactamase for Citrobacter strains.

This figure shows susceptibility/ resistance of inducible β - lactamase for Citrobacter.

No.of organisms susceptible/resistance

1.5

Proteus vulgaris & Proteus mirabilis

Organism

Fig. (10): shows susceptibility/resistance of inducible beta-lactamase for Proteus vulgaris & Proteus mirabilis strains.

This figure shows susceptibility/ resistance of inducible β - lactamase for Proteus vulgaris & Proteus mirabillis.

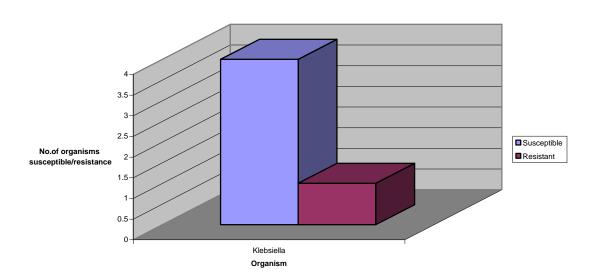


Fig. (11): shows susceptibility/resistance of inducible beta-lactamase for Klebseilla strains.

This figure shows susceptibility/ resistance of inducible β - lactamase for Klebsiella.

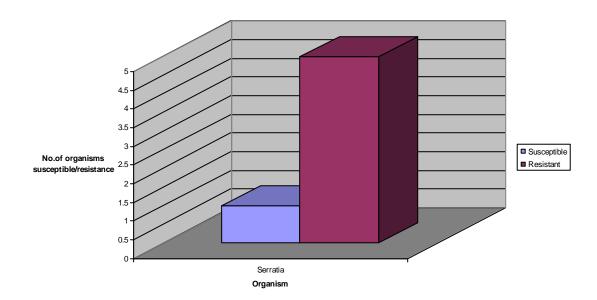


Fig. (12): shows susceptibility/resistance of inducible beta-lactamase for Serratia strains.

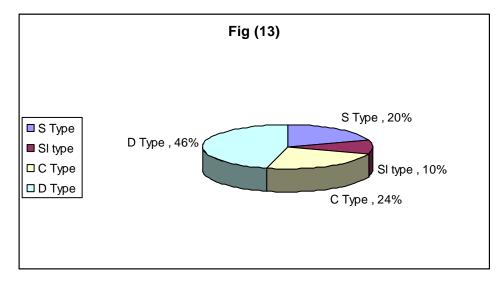
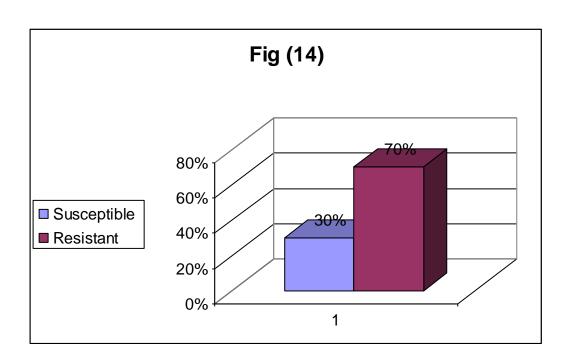

This figure shows susceptibility/ resistance of inducible β - lactamase for Proteus Serratia.

Table (24) Showing susceptibility to 3 rd generation cephalosporin:-

KBDA zone types around CTX & CAZ	No. of organism (n=50)	Percentage of zone type	Susceptible interpretation
S - type	10	20 %	Susceptible 30%
Sl – type	5	10 %	
C - type	12	24 %	Resistant (inducible) 76%
D – type	23	46 %	

This table shows 4 different patterns expressing the degree of expression of inducible β - lactamase by disk approximation method. The overall resistance detection (either C & D deformity) was 70 % among all studied cases.

Fig. (13 & 14): Showing susceptibility to 3 rd generation cephalosporin


This figure shows the distribution of the 4 morphological results:

S: 20 %


S1: 10 %

C: 24 %

D: 46 %

This figure shows the overall percentage of inducible β -lactamases among studied cases.

(C-deformity)

(D-deformity)

Two examples of disk approximation to detect inducible $\beta\mbox{-lactamase}$ to D deformity and C deformity.