CONTENTS

	r
INTRODUCTION	••••
REVIEW OF LITERATURE	
2.1. Definations	••••
2.1.1. Cellulose	••••
2.1.2. Cellulases	••••
2.2. Structural unit of cellulose	••••
2.3. The mechanism of the enzymatic hydrolysis of cellulo	ose
2.4. The factors affecting the action of celluloytic enzyme	S
2.4.1. Effect of carbon and nitrogen source	
2.4.2. Effect of Incubation period	••••
2.4.3. Effect of Temperature	••••
2.4.4. Effect of pH	••••
2.4.5. Effect of activators and inhibitors	••••
2.5. Definations.	••••
2.5.1. Compost	••••
2.5.2.Composting	••••
2.6. The benefits of using compost. Anonymous (1989).	
2.7. Factors affecting the decomposition process	••••
2.7.1. Appropriate microbial populations	••••
2.7.2. Sufficient aeration.	••••
2.7.3. Temperature	••••
2.7.4. C/N ratio	••••
2.8 Effect of compost on	••••
2.8.1. Soil fertility	••••
2.8.2. Yield and productivity	••••
2.8.3. Oil production	••••
MATERIALS AND METHOD	••••
3.1. MATERIALS .	••••
3.1.1. Location of the agricultural experiments	••••
3.1.2. Organic materials	••••
3 1 2 1 Rice straw	

	3.1.2.2. Garbage	38
	3.1.2.3. Organic manure	38
	3.1.3. Chemical accelerator of composts	38
	3.1.4. Inorganic fertilizers	40
	3.1.5. Inoculants	40
	3.1.5.1. Cellulolytic agents.	40
	3.1.5.2.Biofertilizer agents	40
	3.1.6.Cultivars	40
	3.1.7. Media used	40
	3.1.8. Reagents	44
3.2.	METHOD	45
	3.2.1. Isolation and purification of cellulolytic fungi	
	and bacteria	45
	3.2.2. Selection of the most active cellulolytic isolates	46
	3.2.3.Estimation of Glucose.	46
	3.2.4.Identification of the most active isolates	47
	3.2.4.1.Identification of the cellulolytic fungus	
	isolate	47
	3.2.4.2. Identification of the cellulolytic bacterial	
	isolate	47
	3.2.5. Trials for maximizing the cellulolytic activities	
	of most axtive strains	47
	3.2.5.1. Effect of different cellulose sources (carbon	
	source)	48
	3.2.5.2. CMC concentration (as a sole carbon source).	48
	3.2.5.3. Effect of incubation period	48
	3.2.5.4. Effect of incubation temperature	48
	3.2.5.5. Effect of pH on the medium	48
	3.2.5.6. Effect of Nitrogen source	49
	3.2.5.7. Effect of metallic ions. (Micronutrients)	49
	3.2.5.8.Effect of vitamins.	50
	3.2.6. Preparation of crude enzymes from each cellulolytic	
	strains	50
	3.2.7.Assay of cellulose activity (CMCase)	51
	3.2.8. Assay of celluloytic enzymes activity	51

3.2.8.1. Fpase activity	51
3.2.8.2. CMCase activity. (Cx activity)	51
3.2.8.3. Exo- Cellobiohydrolase activity (C_1)	51
3.2.8.4. Cellobiose assay for beta glucosidase	52
3.2.9. Estimation of Protein.	52
3.2.10.Isolation and selection of most active phosphate	
dissolving bacteria.	52
3.2.11. Method of composting the wastes on small scale.	53
3.2.12. Composting of the wastes on large scale	53
3.2.13. Chemical analysis of compost	54
3.2.14. Microbiological analysis of compost samples	54
3.2.15.Field experiment.	55
3.2.16. Parameters measured	57
3.2.16.1. Plant parameters for each plant type	57
3.2.16.2. Microbiological analysis	57
3.2.17. Statistical analysis	58
4. RESULTS	59
4.1.Isolation of the cellulolytic bacteria and fungi	59
4.2. Assay of cellulase activity of cellulolytic bacterial	
and fungal isolates	59
4.3. Identification of the most active cellulolytic bacterial	
and fungal isolates	59
4.4. Effect of nutritional and environmental requirements	
on the cellulose activity	59
4.4.1. Effect of different carbon source.	59
4.4.2.Effect of CMC concentrations.	59
4.4.3. Effect of incubation period.	64
4.4.4. Effect of incubation temperature	64
4.4.5. Effect of pH.	64
4.4.6. Effect of different nitrogen sources	64
4.4.7.Effect of trace elements	74
4.4.8. Effect of vitamins.	74
4.4.9. Media and condition recommended for maximum	
enzyme activity.	74

4.5.	Detection of cellulase (CMCase) activity of the most	
	active cellulolytic strains	79
4.6.	Assay of different cellulases of the most active cellulolytic	
	strains	79
4.7.	Selection of the most active phosphate dissolving bacteria	
	(PDB) isolates	79
4.8.	Composting of rice straw and garbage	79
	4.8.1. On small scale	84
	4.8.1.1 Chemical analysis	84
	4.8.1.1.2. Microbiological analysis	84
	4.8.2. Composting of rice straw and garbage at Maryat	
	station (on large scale).	87
	4.8.2.1. Microbiological analysis	87
	4.8.2.2. Chemical analysis	87
	4.9.1. Microbial densites of sun flower	90
	4.9.1.1. Total microbial count	90
	4.9.1.2. Phosphate dissolvers	93
	4.9.1.3. Azotobacters	93
	4.9.1.4. Cellulose decomposers	93
	4.9.2. Plant characteristics of sun flower	100
	4.9.2.1. Plant height.	100
	4.9.2.2.Shoot fresh weight.	103
	4.9.2.3. Shoot dry weight	103
	4.9.2.4. Chlorophyll content	108
	4.9.2.5. Stalical analysis	108
	4.9.2.6. Disc diameters and yield	112
	4.9.2.7. Weight of 1000 seeds and oil %	112
	4.9.2.8. Statistical analysis	112
	4.9.3. The microbiological characteristics of	
	corn rhizosphere	118
	4.9.3.1. Total microbial counts	118
	4.9.3.2. Phosphate dissolving bacteria (PDB)	118
	4.9.3.3. Azotobacters	123
	4.9.3.4. Cellulose decomposers count	123
	101 Plant Characterestics of corn	129

4.9.4.1. Height of plant	128
4.9.4.2. Shoot fresh weight.	128
4.9.4.3. Shoot dry weight	133
4.9.4.4. Chlorophyll content.	133
4.9.4.5. Statistical analysis	138
4.9.4.6. Weight of kernel and yield	138
4.9.4.7. Weight of 100 seeds and oil %	142
4.9.4.8. Statistical analysis	142
5. DISCUSSION AND GENERAL CONCLUSION	146
6. SUMMARY	151
7. REFERENCE	157
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1.	Soil physical and chemical analyses of investigated area Maryut soil.	39
2.	Isolation of the cellulolytic bacteria and fungi .	60
3.	Assay of cellulase activity (EU) of cellulolytic bacterial and fungal isolates	61
4.	Effect of different carbon source (substrates)on the cellulase activity of most active cellulolytic strains .	65
5.	Effect of CMC concentration on the cellulase activity of most active cellulolytic strains .	66
6.	Effect of incubation periods on the cellulose activity of most active cellulolytic strains .	66
7.	Effect of incubation temperature on the cellulase activity of most active cellulolytic strains .	69
8.	Effect of pH on the cellulase activity of most active cellulolytic strains .	69
9.	Effect of different nitrogen sources on the cellulase activity of most active cellulolytic strains.	72
10.	Effect of addition of different trace elements on the cellulase activity of most active cellulolytic strains .	75
11.	Effect of vitamins on the cellulase activity of most active cellulolytic strains .	76
12.	Media and condition recommended for the maximum production of cellulases activity .	78
13.	Detection of cellulase (CMC ase) activity of the most active cellulolytic strains .	80
14.	Assay of different cellulases of the most active cellulolytic strains .	81
15	Estimation of pH of the modified Bunt Rovera medium contained rock phosphorus and inoculated with phosphate dissolving bacteria (PDB) isolates.	82

16. Estimation of soluble phosphorus produced in the media 83 contained rock phosphate by different phosphate dissolving bacteria (PDB) isolates. 17. Chemcial characteristics of composted garbage and rice 85 straw during the composting process. Microbiological analysis of rice straw and garbage 18. 86 composts during the composting process (on small scale) 19. Microbiological analysis of rice straw and garbage 88 compost at different intervals (at Maryut Station). 20. Chemical analysis of rice straw and Garbage compost at 89 different intervals during composting process (At Maryut station). 21. Effect of different treatments (organic matter, N. 91 supplementation and biofertilizer) on the total microbial counts in the rhizosphere of sunflower plants. 22. Effect of different treatments (organic matter, N. 94 and biofertilizer) on phosphate supplementation dissolving bacteia counts in the rhizosphere of sunflower plants. Effect of different treatments (organic matter, N. 23. 96 supplementation and biofertilizer) on Azotobacters count in the rhizosphere of sunflower plants. 24. Effect of different treatments (organic matter, N. 98 supplementation and biofertilizer) on cellulose decomposer counts in the rhizosphere of sunflower plants. 25. Effect of different treatments (organic matter, N. 101 supplementation and biofertilizer) on the height of sunflower plants 26. Effect of different treatments (organic matter, 104 supplementation and biofertilizer) on shoot fresh weight of sunflower stem. 27 Effect of different treatments (organic matter, N. 106 supplementation and biofertilizer) on the shoot dry weight of sunflower

supplementation and biofertilizer) on the chlorophyll

Effect of different treatments (organic matter,

109

28

- content of sunflower plants.
- 29 Statistical mean effects of stages, Organic matter, 111 biofertilizer and N-supplementation (Treatments) on the length, fresh weight, dry weight and chlorophyll of Sunflower plant.
- 30 Effect of different treatments (organic matter, N. 113 supplementation and biofertilizer) on the yield of sunflower plants.
- 31 Effect of different treatments (organic matter, N. 115 supplementation and biofertilizer) on the weight of 1000 seed (gm) and oil content (%) of sunflower plants.
- 32 Statistical mean effects of organic matter, biofertilizer and N-supplementation (Treatments) on the diameter of discs, weight of seeds / feddan, weight of 1000 seeds and oil content of sun flower plant.
- 33 Effect of different treatments (organic matter, N. 119 supplementation and biofertilizer) on total microbial counts in the rhizosphere of corn plants.
- 34 Effect of different treatments (organic matter, N. 121 supplementation and biofertilizer) on phosphate dissolving bacteria counts in the rhizosphere of corn plants.
- 35 Effect of different treatments (organic matter, N. 124 supplementation and biofertilizer) on azotobacters count in the rhizosphere of corn plants.
- 36 Effect of different treatments (organic matter, N. 126 supplementation and biofertilizer) on cellulose decomposer counts in the rhizosphere of corn plants.
- 37 Effect of different treatments (organic matter, N. 129 supplementation and biofertilizer) on the height of corn plants.
- 38 Effect of different treatments (organic matter, N. 131 supplementation and biofertilizer) on the shoot fresh weight of corn.
- 39 Effect of different treatments (organic matter, N. 134 supplementation and biofertilizer) on the shoot dry weight of corn.

- 40 Effect of different treatments (organic matter, N. 136 supplementation and biofertilizer) on the chlorophyll content of corn plant .
- 41 Statistical mean effects of stages, Organic matter, 139 biofertilizer and N-supplementation (Treatments) on the length, fresh weight, dry weight and chlorophyll of corn plant.
- 42 Effect of different treatments (organic matter, N. 140 supplementation and biofertilizer) on the weight of Kernels and the yield of corn.
- 43 Effect of different treatments (organic matter, N. 143 supplementation and biofertilizer) on weight of 100 grains and oil content of corn plant.
- 44 Statistical mean effects of organic matter, biofertilizer 145 and N-supplementation (Treatments) on the weight of kernels, grains/plant, grains/feddan, weight of 100 grains and oil percent of corn plant.

LIST OF FIGURES

No.	Title	Page
1	Identification of Bacterial isolates by the Biolog microlog.	62
2	Vegetative cells of Stachybotrys sp. (x 1000).	63
3	Effect of different carbon source (substrates)on the cellulase activity of most active cellulolytic strains.	65
4	Effect of CMC concentration on the cellulase activity of most active cellulase strains .	67
5	Effect of incubation periods on the cellulase activity of the most active cellulolytic strains .	68
6	Effect of incubation temperature on the cellulase activity of most active cellulolytic strains.	70
7	Effect of pH on the cellulase activity of the most active cellulolytic strains.	71
8	Effect of different Nitrogen sources on the cellulase activity of most active cellulolytic strains.	73
9	Effect of addition of different trace elements on the cellulase activity of most active cellulolytic strains.	77
10	Effect of vitamins on the cellulase activity of most active cellulolytic strains .	77
11	Degradation zone of CMC by most active celluloytic strains.	80
12	Effect of different treatments (organic matter, N. supplementation and biofertilizer) on total microbial counts in the rhizosphere of sunflower plants.	92
13	Effect of different treatments (organic matter, N. supplementation and biofertilizer) on phosphate dissolving bacteria counts in the rhizosphere of sunflower plants.	95
14	Effect of different treatments (organic matter, N. supplementation and biofertilizer) on Azotobacter counts in the rhizosphere of sunflower plants.	97

- 15 Effect of different treatments (organic matter, N. 99 supplementation and biofertilizer) on cellulose decomposer counts in the rhizosphere of sunflower plants.
- 16 Effect of different treatments (organic matter, N. 102 supplementation and biofertilizer) on the height of sunflower plants.
- 17 Effect of different treatments (organic matter, N. 105 supplementation and biofertilizer) on shoot fresh weight of sunflower stem.
- 18 Effect of different treatments (organic matter, N. 107 supplementation and biofertilizer) on the shoot dry weight of sunflower.
- 19 Effect of different treatments (organic matter, N. 110 supplementation and biofertilizer) on the chlorophyll content of sunflower plants.
- 20 Effect of different treatments (organic matter, N. 114 supplementation and biofertilizer) on the yield of sunflower plants.
- 21 Effect of different treatments (organic matter, N. 116 supplementation and biofertilizer) on the weight of 1000 seed (gm) and oil content (%) of sunflower plants.
- 22 Effect of different treatments (organic matter, N. 120 supplementation and biofertilizer) on total microbial counts in the rhizosphere of corn plants.
- 23 Effect of different treatments (organic matter, N. 122 supplementation and biofertilizer) on phosphate dissolving bacteria counts in the rhizosphere of corn plants.
- 24 Effect of different treatments (organic matter, N. 125 supplementation and biofertilizer) on Azotobacter counts in the rhizosphere of corn plants.
- 25 Effect of different treatments (organic matter, N. 127 supplementation and biofertilizer) on cellulose decomposer counts in the rhizosphere of corn plants.
- 26 Effect of different treatments (organic matter, N. 130 supplementation and biofertilizer) on height of corn

plants

- 27 Effect of different treatments (organic matter, N. 132 supplementation and biofertilizer) on the shoot fresh weight of corn stem.
- 28 Effect of different treatments (organic matter, N. 135 supplementation and biofertilizer) on the shoot dry weight of corn stem.
- 29 Effect of different treatments (organic matter, N. 137 supplementation and biofertilizer) on the chlorophyll of corn plant at different stages.
- 30 Effect of different treatments (organic matter, N. 141 supplementation and biofertilizer) on the weight of 100 seed (gm) and oil content (%) of corn plant.
- 31 Effect of different treatments (organic matter, N. 144 supplementation and biofertilizer) on the weight of 100 seed (gm) and oil content (%) of corn plant.