CONTENTS

	Page No.
CHAPTER I: INTRODUCTION	1
Geological Settings	4
Previous Works	7
CHAPTER II: GEOMORPHOLOGY AND HYDRO-	
MORPHOLOGIC FEATURES	15
1- Lateral Changes in the Bottom Configuration	17
2- Longitudinal Changes of the Hydromorphologic features	25
CHAPTER III: HYDROGRAPHIC INVESTIGATION	30
1- Technique Used for Water Measurements and analyses	30
2- Water and Air Temperature	30
3- Current Regime	35
4- pH Values	37
5- Electric Conductivity and Total Dissolved Salts	39
6- Nutrient salts	44
CHAPTER IV: THE RECENT SEDIMENTS	49
A- Suspended Matters	49
1- Technique used for sampling and analysis	49
2- The distribution of suspended matters	50
3- The factors affecting the distribution of suspended matters	50
B- Bottom Sediments	54
1- Technique used for sampling and analyses	57

2- Grain size analysis	57
3- Mechanism of deposition	69
4- Sediment types	71
5- The factors controlling sediment distribution	76
6- Loss of Ignition as a Function of Organic Matter Content	80
The distribution of organic matter content	80
7- Carbonates Contained in Bottom Sediments	83
The distribution of carbonate content	83
8- Mineralogical Investigation	85
The Distribution of the Minerals Composing Sediments	87
CHAPTER V: SUMMARY AND CONCLUSION	93
CHAPTER VI: REFERENCES	102
ARABIC SUMMARY	

List of Figures

Fig. No.		Page No.
1	The main tributaries feeding the Nile upstream	3
2	Lake Nasser (a) A Satellite image. (b) A structural and	
	geologic map of the northern part of Lake Nasser (after	
	Kim and Sultan, 2002)	6
3	Location map showing the position of 15 selected	
	profiles along the studied locality	19
4	The bottom configuration in the studied locality	20
5	Longitudinal changes of width, depth and profile areas	
	after stretching SN and removing the sinuosity of the	
	studied locality	26
6	The changes in hydromorphologic features along the	
	studied locality	29
7	The temperature changes along the studied locality	
	(recorded during the period between 13 and 26 July	
	2001)	36
8	Average current velocities along the studied locality	36
9	An interrelation between the current velocities and	
	profile area	38
10	The distribution of pH along the studied locality	38
11	The distribution of electrical conductivity along the	
	studied locality	40
12	The distribution of total dissolved salts along the studied	
	locality	40

13	The distribution of the average values of total dissolved	
	salts along the studied locality	4
14	The interrelation between total dissolved salts and	
	nutrient salts along the studied locality	4
15	The interrelation between the average total dissolved	
	salts and the hydromorphologic features along the	
	studied locality	4
16	The average distribution of the total nutrient salts along	
	the studied locality	4
17	The relative distribution of the different components	
	composing nutrient salts along the studied locality	4
18	Average suspended matter distribution along the studied	
	locality	5
19	The interrelation between the average total dissolved	
	salts and the average suspended matters along the	
	studied locality	5
20	Interrelation between the average suspended matters and	
	the hydromorphologic features along the studied locality	5
21	The interrelation between average suspended matters	
	and average current velocity along the studied locality	5
22	Histograms for the bottom sediment samples along the	
	studied locality	5
27	The cumulative curves for the collected bottom	
	sediment samples	6
24	The average distribution of the calculated statistical	
	parameters along the studied locality	6

25	An interrelation between median diameter (MdØ) and	
	inclusive sorting (σ_I)	70
26	An interrelation between median diameter (MdØ) and	
	skewness (Sk _I)	70
27	The C-M diagram of the sediment samples collected	
	along the studied locality based on the explanation	
	proposed by Passega and Byramjee (1962)	72
28	An end member triangle for classifying sediment types	
	on the bases of sand, silt, clay ratio using the diagram	
	proposed by Selley, 1976.	74
29	The average distribution of the different components	
	composing sediments along the studied locality	75
30	An interrelation between the average mean size (MzØ)	
	and the average total dissolved salts along the studied	
	locality	77
31	An interrelation between the average mean size (MzØ)	
	and the average current velocity near bottom along the	
	studied locality	77
32	Interrelation between the average mean size (MzØ) and	
	the hydromorphologic features along the studied locality	79
33	The distribution of L.O.I (organic matter) along the	
	studied locality	82
34	An interrelation between L.O.I (organic matter) and the	
	mean size MzØ along the studied locality	82
35	The average distribution of carbonate contents of the	
	sediments along the studied locality	84

36	An interrelation between the average carbonate content	
	and the average mean size MzØ of the sediments along	
	the studied locality	84
37	An interrelation between the carbonates and L.O.I.	
	(organic matter) in the bottom sediments	86
38	An interrelation between the carbonates contained in the	
	sediments and the pH of water along the studied locality	86
39	X-ray diffraction patterns of the powder of some	
	selected bottom sediment samples along the studied	
	locality	88
40	X-ray diffraction patterns of oriented clay fraction of	
	some selected bottom sediment samples along the	
	studied locality	90
41	X-ray diffraction patterns of glycolated clay fraction of	
	some selected bottom sediment samples along the	
	studied locality	91
42	X-ray diffraction patterns of heated clay fraction of	
	some selected bottom sediment samples along the	
	studied locality	92

List of Tables

Гable No.		Page No.
1	The hydro-morphologic features along the studied	
	locality	16
2	The coordinates and field observations of the collected	
	sediment samples in addition to depths	18
3	Some measurements concerning current velocities and	
	directions, temperature, electrical conductivity, pH, and	
	dissolved oxygen in addition to depth	31
4	The data derived from nutrient salts (Silicates,	
	Phosphates, Nitrates and nitrites)	45
5	The calculated suspended matters in water samples	
	along the studied locality	51
6	The Data derived from grain size analysis and their	
	calculated statistical parameters	64
7	Data calculated for the first percentile (C) and median	
	diameter (M) in microns for the sediment samples along	
	the studied locality	73
8	The data derived from loss of ignition as a function of	
	organic matter contents in addition to carbonates	
	contained in the bottom sediments.	81