## **LIST OF CONTENTS**

| Subject                                                                              | Page |
|--------------------------------------------------------------------------------------|------|
| INTRODUCTION                                                                         | 1    |
| 1. REVIEW OF LITERATURE                                                              | 5    |
| 1.1. Seed borne fungi of groundnut                                                   | 5    |
| 1.2. Seed borne fungi of corn                                                        | 5    |
| 1.3. Definition of aflatoxins                                                        | 7    |
| 1.4. Natural occurrence of aflatoxins $(B_1, B_2, G_1 \text{ and } G_2)$             | 8    |
| 1.5. Structure and properties of aflatoxins $(B_1, B_2, G_1 \text{ and } G_2) \dots$ | 14   |
| 1.6. Types of aflatoxins and character of flatoxins B <sub>1</sub>                   | 16   |
| 1.7. Toxicological effects of aflatoxin $(B_1, B_2, G_1 \text{ and } G_2)$           | 16   |
| 1.7.1. Toxicological effect of aflatoxin B <sub>1</sub> could be divided             |      |
| into the following two parts                                                         | 32   |
| 1.7.1.1. Carcinogenisty of aflatoxin B <sub>1</sub>                                  | 32   |
| 1.7.1.2. Acute toxicity of aflatoxin                                                 | 41   |
| 1.8. Character of AFT B <sub>1</sub> LD <sub>50</sub> of rats                        | 42   |
| 1.9. Effect of acute and chronic toxicity on rats                                    | 42   |
| 1.10. Effect of amount of protein in diets on rats                                   | 44   |
| 1.11. Definition and effect of lipid peroxidation                                    | 44   |
| 1.12. Safety of antioxidant vitamins and β-carotene                                  | 45   |
| 1.13. Vitamins E, C and other cartenoids as antioxidants                             | 46   |
| 1.14. Interaction among vitamin C, E and β-carotene                                  | 47   |
| 1.15. Antioxidant activity of ascorbic acid and α-tocopherol in                      |      |
| vitro studies.                                                                       | 48   |
| 1.16. Roles of vitamins on aflatoxins contaminated diet                              | 49   |
| 1.17. Effect of vitamin E on aflatoxin                                               | 51   |
| 1.18. Effect of aflatoxin B <sub>1</sub> on enzymes activities                       | 52   |

|    | 1.19. Role of vitamin E in diets of rats                      | 54 |
|----|---------------------------------------------------------------|----|
|    | 1.20. Effect of vitamin E on blood ALT, AST, GSH-Px activates | 55 |
|    | 1.21. Biochemical changes of aflatoxicosis.                   | 56 |
|    | 1.22. Histopathology of aflatoxicosis                         | 57 |
| 2. | MATERIALS AND METHODS                                         | 62 |
|    | METHODS                                                       | 62 |
|    | 2.1. Materials                                                | 62 |
|    | 2.1.1. Peanuts and corn                                       | 62 |
|    | 2.1.2. Aflatoxins standards                                   | 62 |
|    | 2.1.3. Thin layer chromatography (TLC) plates                 | 62 |
|    | 2.1.4. Media                                                  | 62 |
|    | 2.1.5. Aflatoxins production                                  | 63 |
|    | 2.1.6. Animals and diagnostic kits                            | 63 |
|    | <b>2.2. Methods</b>                                           | 64 |
|    | 2.2.1. Isolation of molds from tested foodstuff               | 64 |
|    | 2.2.2. Identification of isolated molds                       | 64 |
|    | 2.2.3. Maintenance of isolated molds                          | 65 |
|    | 2.2.4. Aflatoxin extraction                                   | 65 |
|    | 2.2.4.1. From in vitro (fungal cultures)                      | 65 |
|    | 2.2.5. Separation of aflatoxins                               | 66 |
|    | 2.2.5.1. Thin layer chromatography (TLC) technology           | 66 |
|    | 2.2.5.2. Confirmation test                                    | 66 |
|    | 2.2.6. Detection of aflatoxins                                | 66 |
|    | 2.2.6.1. Calculation of aflatoxins                            | 67 |
|    | 2.2.7. Toxicological studies of aflatoxins B <sub>1</sub>     | 68 |
|    | 2.2.7.1. Animals (Experimental animals) for first             |    |
|    | experiment                                                    | 68 |
|    | 2.2.7.2. Experimental design for first experiment             | 68 |

| 2.2.7.3. Animais (experimental animais) for second                   |    |
|----------------------------------------------------------------------|----|
| experiment                                                           | 69 |
| 2.2.7.4. Experimental design for aflatoxin $B_1$ for                 |    |
| second experiment                                                    | 69 |
| 2.2.8 Biochemical analysis                                           | 72 |
| 2.2.8.1. Blood sampling                                              | 72 |
| 2.2.8.2. Organs                                                      | 72 |
| 2.2.8.3. Determination of serum total protein                        | 72 |
| 2.2.8.4. Determination of total cholesterol                          | 72 |
| 2.2.8.5. Determination of urea                                       | 73 |
| 2.2.8.6. Determination of total bilirubin                            | 73 |
| 2.2.8.7. Determination of creatinine                                 | 73 |
| 2.2.8.8. Determination of serum transaminases (AST                   |    |
| and ALT)                                                             | 74 |
| 2.2.9. Histopathological technique                                   | 74 |
| 2.2.10. Statistical analysis                                         | 75 |
| 3. RESULTS AND DISCUSSION                                            | 76 |
| 3.1. Fungi isolated from seeds sample of peanut                      | 76 |
| 3.2. Fungi isolated from grains sample of corn                       | 77 |
| 3.3. Screening of aflatoxin production by various isolates of fungi, |    |
| isolated from peanut and corn grown in liquid medium                 | 77 |
| 3.4. Biochemical observation.                                        | 78 |
| 3.4.1. Effect on activaties of plasma enzymes (ALT, AST,             |    |
| ALP).                                                                | 79 |
| 3.5. Biochemical analysis of blood of rats which injected with       |    |
| aflatoxin B <sub>1</sub> .                                           | 79 |
| 3.5.1. Change in total protein                                       | 80 |
| 3.5.2. Change in total cholesterol                                   | 80 |

| 3.5.3. Change in bilirubin and urea                         | 80  |
|-------------------------------------------------------------|-----|
| 3.5.4. Change in creatinine and plasma enzymes(ALT & AST)   | 80  |
| 3.6. Histopathological changes                              | 100 |
| 3.6.1. Rats liver                                           | 100 |
| 3.6.2. Rats kidney                                          | 102 |
| 3.6.3. Rats heart                                           | 104 |
| 3.6.4. Rats spleen                                          | 104 |
| 3.6.5. Rats lung                                            | 104 |
| 3.6.5. Rats brain                                           | 105 |
| 3.7. Discussion of histopathology                           | 105 |
| 3.7.1. Effect on body weight and some organs of rats        | 105 |
| 3.7.2. The control group (-ve AFT)                          | 107 |
| 3.7.3. Group of AFB <sub>1</sub> only                       | 107 |
| 3.7.4. Effect of supplementation the contaminated diet with |     |
| vitamins on rats.                                           | 107 |
| 4. SUMMARY                                                  | 109 |
| 5. REFERENCES                                               | 111 |
| 6. ARABIC SUMMARY                                           | 1   |

## **LIST OF TABLES**

| Table No.         | Title                                                   | Page |
|-------------------|---------------------------------------------------------|------|
| Table (1)         | : Basal diet composition (standard diet)                | 70   |
| Table (2)         | : Composition of mineral mixture                        | 70   |
| Table (3)         | : Composition of vitamin mixture.                       | 71   |
| Table (4)         | : Show genera of fungi isolated from grains sample of   | 82   |
|                   | ground nut (peanut)                                     |      |
| Table (5)         | : Show genera of fungi isolated from grains sample of   | 83   |
|                   | corn (Zea mays)                                         |      |
| Table (6)         | : Screening of aflatoxin production by various          | 84   |
|                   | isolates of fungi isolated from peanut and corn         |      |
|                   | grown in liquid medium (YES).                           |      |
| Table (7)         | : Effect of vitamins supplementation on body and        | 85   |
|                   | some organs weight of male rats fed on aflatoxins       |      |
|                   | contaminated diet.                                      |      |
| Table (8)         | : Effect of vitamins supplementation on the activity of | 87   |
|                   | plasma alkaline phosphatase (ALP) of male rats fed      |      |
|                   | on diet contaminated with aflatoxins for one month.     |      |
| Table (9)         | : Effect of vitamins supplementation on the activity of | 89   |
|                   | plasma alanine amino-transferase (ALT) of male          |      |
|                   | rats fed on diet contaminated with aflatoxins for       |      |
|                   | one month.                                              |      |
| <b>Table (10)</b> | : Effect of vitamins supplementation on the activity of | 90   |
|                   | plasma aspartate amino-transferase (AST) of male        |      |
|                   | rats fed on diet contaminated with aflatoxins for       |      |
|                   | one month.                                              |      |

| Table No.         | Title                                                                | Page |
|-------------------|----------------------------------------------------------------------|------|
| <b>Table</b> (11) | : Effect of vitamins supplementation on the activity of              | 91   |
|                   | blood urea nitrogen (BUN) of male rats fed on diet                   |      |
|                   | contaminated with aflatoxins for one month.                          |      |
| <b>Table (12)</b> | : Effect of vitamins supplementation on the creatinine               | 92   |
|                   | level of male rats fed on diet contaminated with                     |      |
|                   | aflatoxins for one month.                                            |      |
| <b>Table (13)</b> | : Effect of aflatoxin B <sub>1</sub> on plasma total cholesterol of  | 93   |
|                   | albino male rat injected aflatoxin B <sub>1</sub> interperitoneal    |      |
|                   | (IP) twice a week for one month.                                     |      |
| <b>Table (14)</b> | : Effect of aflatoxin B <sub>1</sub> on total protein in albino male | 94   |
|                   | rat injected aflatoxin $B_1$ interperitoneal (IP) twice a            |      |
|                   | week for one month.                                                  |      |
| <b>Table (15)</b> | : Effect of aflatoxin B <sub>1</sub> on bilirubin of albino male rat | 95   |
|                   | injected aflatoxin B <sub>1</sub> inerpreitoneal (IP) twice a        |      |
|                   | week for one month.                                                  |      |
| <b>Table (16)</b> | : Effect of aflatoxin B <sub>1</sub> on urea of albino male rat      | 96   |
|                   | injected aflatoxin B <sub>1</sub> interperitoneal (IP) twice a       |      |
|                   | week for one month.                                                  |      |
| <b>Table (17)</b> | : Effect of aflatoxin B <sub>1</sub> on creatinine of albino male    | 97   |
|                   | rat injected aflatoxin B <sub>1</sub> interperitoneal (IP) twice a   |      |
|                   | week for one month.                                                  |      |
| <b>Table (18)</b> | : Effect of aflatoxin B <sub>1</sub> on (AST) aspartate              | 98   |
|                   | aminotransferase of albino male rat injected                         |      |
|                   | aflatoxin $\beta_1$ interperitoneal (IP) twice a week for            |      |
|                   | one month.                                                           |      |
| <b>Table (19)</b> | <b>:</b> Effect of aflatoxin $B_1$ on (ALT), alanine                 | 99   |
|                   | aminotransferase of albino male rat injected                         |      |
|                   | aflatoxin B <sub>1</sub> interperitoneal (IP) twice a week for       |      |
|                   | one month.                                                           |      |

## **LIST OF FIGURES**

| Title                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------|
| Show genera of fungi isolated from seeds sample of peanut                                                              |
| (Arachis hypogaea L.).                                                                                                 |
| Show genera of fungi isolated from grains sample of corn (Zea                                                          |
| mays).                                                                                                                 |
| Effect of vitamins supplementation on body and some organs                                                             |
| weight of male rats fed on aflatoxins contaminated diet (Mean $\pm$                                                    |
| S.E).                                                                                                                  |
| Effect of vitamins supplementation on the activity of plasma                                                           |
| alkaline phosphatase (ALP) of male rats fed on diet                                                                    |
| contaminated with aflatoxins for one month (Mean $\pm$ S.E).                                                           |
| Effect of vitamins supplementation on the activity of plasma                                                           |
| alanine amino-transferase (ALT) of male rats fed on diet                                                               |
| contaminated with aflatoxins for one month (Mean $\pm$ S.E).                                                           |
| Effect of vitamins supplementation on the activity of plasma                                                           |
| aspartate aminotransferase (AST) of male rats fed on diet contaminated with aflatoxins for one month (Mean $\pm$ S.E). |
| Effect of vitamins supplementation on the activity of blood                                                            |
| urea nitrogen (BUN) of male rats fed on diet contaminated                                                              |
| with aflatoxins for one month (Mean $\pm$ S.E).                                                                        |
| Effect of vitamins supplementation on the creatinine level of                                                          |
| male rats fed on diet contaminated with aflatoxins for one                                                             |
| month (Mean $\pm$ S.E).                                                                                                |
| Effect of aflatoxin B <sub>1</sub> on plasma total cholesterol of albino male                                          |
| rats injected aflatoxin B <sub>1</sub> interperitoneal (IP) twice a week for                                           |
| one month.                                                                                                             |
|                                                                                                                        |

| Fig. (10) | Effect of aflatoxin B <sub>1</sub> on total protein of albino male rats       |
|-----------|-------------------------------------------------------------------------------|
|           | injected aflatoxin B <sub>1</sub> interperitoneal (IP) twice a week for one   |
|           | months.                                                                       |
| Fig. (11) | Effect of aflatoxin B <sub>1</sub> on bilirubin of albino male rats injected  |
|           | aflatoxin B <sub>1</sub> interperitoneal (IP) twice a week for one month.     |
| Fig. (12) | Effect of aflatoxin B <sub>1</sub> on urea of albino male rats injected       |
|           | aflatoxin B <sub>1</sub> interperitoneal (IP) twice a week for one month.     |
| Fig. (13) | Effect of aflatoxin B <sub>1</sub> on creatinine of albino male rats male     |
|           | injected aflatoxin B <sub>1</sub> interperitoneal (IP) twice a week for one   |
|           | month.                                                                        |
| Fig. (14) | Effect of aflatoxin B <sub>1</sub> on (AST) asparate amino-transferase of     |
|           | albino male rats injected aflatoxin B <sub>1</sub> interperitoneal (IP) twice |
|           | a week for one month.                                                         |
| Fig. (15) | Effect of aflatoxin B <sub>1</sub> on (ALT) alanine aminotransferase of       |
|           | albino male rats male injected aflatoxin B <sub>1</sub> interperitoneal (IP)  |
|           | twice a week for one month.                                                   |

## **LIST OF PHOTO**

| Fig. No.  | Title                                                                       |
|-----------|-----------------------------------------------------------------------------|
| Photo (1) | Control liver of rat (Hx. & E.; x 100).                                     |
| Photo (2) | Liver of rat injected with aflatoxin B <sub>1</sub> showing bile ductal     |
|           | hyperplasia (H), fibrous connective tissue proliferation (CT)               |
|           | and few mononuclear cellular aggregation in the portal area                 |
|           | (MNC) (H & E. stain x 200).                                                 |
| Photo (3) | Liver of rat injected with aflatoxin B <sub>1</sub> showing pyknosis of     |
|           | nuclei of hepatocytes (arrows) (H & E. stain x 200).                        |
| Photo (4) | Liver of rat injected with aflatoxin B <sub>1</sub> showing hydropic        |
|           | degeneration of hepatocytes with enlargement of some nuclei                 |
|           | (arrows) (H. & E. stain x 200).                                             |
| Photo (5) | Liver of rat injected with aflatoxin B <sub>1</sub> showing congestion of   |
|           | sinusoids (arrows) (H. & E. stain x 200).                                   |
| Photo (6) | Liver of rat injected with aflatoxin B <sub>1</sub> showing fatty           |
|           | degeneration of hepatic cells (arrows). (H. & E. stain x 200).              |
| Photo (7) | Control kidney of rat fed on standard diet without aflatoxin B <sub>1</sub> |
|           | showing normal renal cortical tissue. Observe the normal                    |
|           | glomerulus (G) and convoluted tubules (RT). (H. & E stain x                 |
|           | 100).                                                                       |
| Photo (8) | Kidney of rat injected with aflatoxin B <sub>1</sub> showing disintegration |
|           | and desquamation of the tubular epithelium (arrows). Notice                 |
|           | pyknosis of some nuclei (N). (H. & E. stain x 200).                         |
| Photo (9) | Kidney of rat injected with aflatoxin B <sub>1</sub> showing coagulative    |
|           | necrosis of the renal tubules evidenced by pyknosis of nuclei,              |
|           | highly eosinophilia of cytoplasm and loss of cell outlines. (H.             |
|           | & E. stain x 200).                                                          |

| Fig. No.          | Title                                                                      |
|-------------------|----------------------------------------------------------------------------|
| <b>Photo</b> (10) | Kidney of rat injected with aflatoxin B <sub>1</sub> showing glomerular    |
|                   | hypercellularity (G) and congestion (H. & E stain x 200).                  |
| <b>Photo</b> (11) | Control lung of rat showing normal pulmonary parenchyma                    |
|                   | formed from respiratory bronchioles and alveoli (H. & E. stain             |
|                   | x 200).                                                                    |
| <b>Photo (12)</b> | Lung of rat injected with aflatoxin B <sub>1</sub> showing accumulation of |
|                   | pink homogenous exudate (ex) mixed with mononuclear                        |
|                   | inflammatory cells (MNC) inside the pulmonary alveoli (H. &                |
|                   | E. stain x 200).                                                           |
| <b>Photo</b> (13) | Lung of rat injected with aflatoxin B <sub>1</sub> showing desquamation of |
|                   | the lining epithelium of the branchiol (arrows) (H. & E. stain x           |
|                   | 200).                                                                      |
| <b>Photo</b> (14) | Lung of rat injected with aflatoxin B <sub>1</sub> showing thickening of   |
|                   | blood vessel walls (arrows) with perivascular lymphocytic                  |
|                   | cellular aggregation (L). (H. & E. stain 200).                             |
| <b>Photo</b> (15) | Lung of rat injected with aflatoxin B <sub>1</sub> showing focal areas of  |
|                   | compensatory alveolar emphysema (Em) with focal                            |
|                   | lymphocytic cellular infiltration of the pulmonary tissues                 |
|                   | (arrow) (H. & E. stain x 200).                                             |

## **LIST OF ABBREVIATION**

| FAO                | Food Agricultural Organization                  |
|--------------------|-------------------------------------------------|
| AFTB <sub>1</sub>  | Aflatoxin B <sub>1</sub>                        |
| AFTB <sub>2</sub>  | Aflatoxin B <sub>2</sub>                        |
| AFG <sub>1</sub>   | Aflatoxin G <sub>1</sub>                        |
| AFG <sub>2</sub>   | Aflatoxin G <sub>2</sub>                        |
| AF                 | Aflatoxin                                       |
| TLC                | Thin Layer Chromatography                       |
| UV                 | Ultraviolet                                     |
| μg/kg              | Microgram / kilogram                            |
| AST                | Aspartate Aminotransferace                      |
| ALT                | Alanine aminotranferace                         |
| IU/Kg              | International Unites / kilogram                 |
| GSH-PX             | Gluctothione peroxidase                         |
| ВНА                | Butylatd hydroxyanisole                         |
| ВНТ                | Butylated hydroxytaleuena                       |
| GT                 | Green tea                                       |
| AFM                | Aflatoxin                                       |
| AFL                | Aflatoxicol                                     |
| $\mathrm{LD}_{50}$ | Lethal dose for 50 % of animal test populations |
| Se                 | Selenium                                        |
| Mg/kg B.W          | Milligram / kilogram Body Weight                |
| SGOT               | Serum Glutamic Oxaloacetic transaminase         |
| GOT                | Glutamic oxaloacetic transaminase               |
| OCT                | Ornithine carbamyle transferase                 |
| IDH                | Isociric dehydrogenase                          |
| ALP                | Alkaline phosphate                              |

| PUFA | Polyunsaturated fatty acids |
|------|-----------------------------|
| LDL  | Low-density lipoprotein     |
| AFT  | Aflatoxin                   |
| YES  | Yeast extract sucrose       |
| g/L  | Gram/Litre                  |
| PDA  | Potato dextrose agar        |
| СНЕ  | Cholesterol esterase        |
| CHOD | Cholesterol oxidase         |
| MDH  | Malate dehydrogenase        |
| LDH  | Lactate dehydrogenase       |
| LSD  | Least significant different |
| Vit. | Vitamin                     |
| BUN  | Blood Urea Nitrogen         |
| S.E. | Standard error              |
| IP   | Interperitoneal             |
| X    | Mean                        |

# Acknowledgement

First and Forever, ultimate thanks to **ALLAH** The most beneficent and merciful and without his aid this work could not be done.

I would like to express my sincere gratitude and appreciation to Late **Prof. Dr. Hussein Yousry. Olama**, Professor of Botany, Faculty of Science, Benha University, for his valuable criticism, reading the manuscript, supervision and valuable help.

I am greatly indebted to Prof. Dr. Saeb Abd El-Monem Hafez Professor of Nutrition, Institute Food Technology, Agricultural Research Center, Giza for his closed supervision, encouragement, guidance, valuable advice, his unlimited help during preparation and constant encouragement.

I also wish to express my great thanks to Dr. Talaat Ibrahim El-Sayed, Assistant Professor of Microbiology, Botany Department, Faculty of Science, Benha University, for supervising the work, his careful guidance, continuous constructive criticism and valuable discussions during the course of this investigation and for the revision of the manuscript. I will always be indebted to him for his constant encouragement.

I also wish to express my great thanks to Dr. Mahmoud Moustafa Amer, Assistant Professor of Microbiology, Botany Department, Faculty of Science, Benha University, for his valuable criticism, reading the manuscript, supervision, valuable help and constant encouragement.

Finally, I would like to express my thanks to every one who had participated some way or another in the conduction of this study.