Chapter 2

$GT_{3\frac{1}{2}}$ -Spaces and Completely Regular Spaces

2.1 Introduction

There is a notion of L-real numbers introduced by S. Gähler and W. Gähler in [28], and is defined as a convex, normal, compactly supported and upper semi-continuous L-subsets of the set of real numbers \mathbf{R} . The set of all L-real numbers is called L-real line and is denoted by \mathbf{R}_L , where L is a complete chain. In this chapter, using the space (I_L, \Im) , where I = [0, 1] is the closed unit interval and \Im is the L-topology on I_L , a notion of completely regular L-topological spaces is introduced and studied.

In Section 2.2, this completely regular L-topological space is defined, as in case of GT_i -spaces; i=0,1,2,3,4, using the ordinary points and usual subsets. The L-topological space which is GT_1 and completely regular in our sense will be denoted here by $GT_{3\frac{1}{2}}$ -space (or L-Tychonoff space) and the category of all $GT_{3\frac{1}{2}}$ -spaces will be denoted by L-Tych. For these $GT_{3\frac{1}{2}}$ -spaces, the Urysohn Lemma is proved and hence it is shown that each GT_4 -space is a GT_3 -space. Moreover, each $GT_{3\frac{1}{2}}$ -space is a GT_3 -space. For each case a counter example will be given. It also is shown that the $GT_{3\frac{1}{2}}$ -space is an extension with respect to the functor ω , defined by Lowen in [51], from the category Tych of $T_{3\frac{1}{2}}$ -spaces to the category L-Tych.

We showed in Section 2.3 that the category L-Tych is topological over the category Set of sets [1]. This means that the initial and the final L-topological spaces of a family of $GT_{3\frac{1}{2}}$ -spaces also are $GT_{3\frac{1}{2}}$ -spaces. As special initial and final L-topological spaces, the subspace, the product space, the quotient space and the sum space of $GT_{3\frac{1}{2}}$ -spaces are $GT_{3\frac{1}{2}}$ -spaces.

There are several notions of completely regular L-topological spaces such as the notions defined by Hutton in [41], by Katsaras in [46] and by Kandil and El-Shafee in [43]. In Section 2.4, it is shown that our notion of completely regular L-topological

spaces is more general than these notions [41, 43, 46]. Counter examples are given to show these generalizations.

In Section 2.5, we shall study the relation between the $GT_{3\frac{1}{2}}$ -spaces and the L-proximity spaces defined by Katsaras in [45]. Using Urysohn's Lemma, which we had established in Section 2.2 and other results which are proved here, we show many results joining the completely regular L-topology in our sense and the L-proximity in sense of Katsaras. We show that the L-topology associated with any L-proximity is completely regular in our sense. Moreover, we show that every completely regular stratified L-topology is compatible with an L-proximity.

Section 2.6 is devoted to study the relation between the $GT_{3\frac{1}{2}}$ -spaces and the L-uniform spaces defined by Gähler and the first author and others in [32]. In these L-uniform spaces (X, \mathcal{U}) , the L-uniform structures \mathcal{U} are defined, in a similar way to the usual case, as L-filters on $X \times X$. We had established some results similar to what we had introduced for the L-proximities in Section 2.5. We show that the L-topology associated with any L-uniform structure is completely regular in our sense, and that every completely regular stratified L-topology is compatible with an L-uniform structure, that is, every completely regular stratified L-topology is uniformizable.

In the last section, Section 2.7, we investigate the relation of the $GT_{3\frac{1}{2}}$ -spaces with the L-compact spaces defined by Gähler in [30], which is called G-compact spaces. We show also here some results joining the $GT_{3\frac{1}{2}}$ -spaces and the G-compact spaces. We show that the L-unit interval (I_L, \Im) and that the L-cube, defined as a product of L-unit intervals are G-compact GT_2 -spaces and consequently GT_4 -spaces, and hence they are $GT_{3\frac{1}{2}}$ -spaces. We also show that a G-compact space is a GT_2 -space if and only if it is a $GT_{3\frac{1}{2}}$ -space. If τ_1 and τ_2 are L-topologies on a set X with τ_1 is finer than τ_2 , and (X, τ_1) is a G-compact space and (X, τ_2) is a $GT_{3\frac{1}{2}}$ -space, then we prove that τ_1 is equivalent to τ_2 . Moreover, we show that an L-topological space (X, τ) is a $GT_{3\frac{1}{2}}$ -space if and only if it is homeomorphic to a subspace of a G-compact GT_2 -space if and only if it is homeomorphic to a subspace of a G-compact GT_2 -space if and only if it is homeomorphic to a subspace of a G-compact GT_2 -space if and only if it is homeomorphic to a subspace of a G-compact G-compact G-compact G-space if and only if it is homeomorphic to a subspace of a G-compact G-compact G-space if and only if it is homeomorphic to a subspace of a G-compact G-compact G-space if and only if it is homeomorphic to a subspace of a G-compact G-space

2.2 $GT_{3\frac{1}{2}}$ -spaces

Now, we shall introduce our notion of completely regular spaces in the fuzzy case.

Definition 2.2.1 An *L*-topological space (X, τ) is said to be *completely regular* if for all $x \in X$, $F \in P(X)$ with $F \in \tau'$ and $x \notin F$, there exists an *L*-continuous mapping $f: (X, \tau) \to (I_L, \Im)$ such that $f(x) = \overline{1}$ and $f(y) = \overline{0}$ for all $y \in F$.

Definition 2.2.2 An *L*-topological space (X, τ) is called a $GT_{3\frac{1}{2}}$ -space (or an *L*-Tychonoff space) if it is GT_1 and completely regular.

From that $\bigwedge_{s < t} f(z)(s) \ge \bigvee_{r > t} f(z)(r)$ for all $z \in X$ in general, we get for all $z \in X$ that:

$$\begin{array}{rcl} (h \wedge k)(z) & = & ((R_{\frac{1}{2}} \circ f) \wedge (R^{\frac{1}{2}} \circ f))(z) \\ & = & \bigvee_{\alpha > \frac{1}{2}} f(z)(\alpha) \wedge (\bigvee_{\alpha \geq \frac{1}{2}} f(z)(\alpha))' \\ & \leq & \bigwedge_{\alpha < \frac{1}{2}} f(z)(\alpha) \wedge \bigwedge_{\alpha \geq \frac{1}{2}} f(z)(\alpha)' \\ & < & 1. \end{array}$$

Hence, $\sup(h \wedge k) < \mathcal{N}(x)(k) \wedge \bigwedge_{y \in F} \mathcal{N}(y)(h)$ and therefore (X, τ) is a regular space and consequently it is a GT_3 -space. \square

In this example we introduce a GT_3 -space which is not a $GT_{3\frac{1}{2}}$ -space.

Example 2.2.2 Let $X = \{x, y\}$ with $x \neq y$ and let $\tau = \{\overline{0}, \overline{1}, y_{\frac{1}{2}}, y_1, x_{\frac{3}{4}} \lor y_{\frac{1}{2}}, x_{\frac{3}{4}} \lor y_1\}$. Then $\tau' = \{\overline{0}, \overline{1}, x_{\frac{1}{4}}, x_1, x_{\frac{1}{4}} \lor y_{\frac{1}{2}}, x_1 \lor y_{\frac{1}{2}}\}$ and there is only the case of $y \notin \{x\} \in \tau'$ to be studied. Since $f = x_{\frac{3}{4}} \lor y_{\frac{1}{2}}$ and $g = y_1$ in L^X implies

$$\mathcal{N}(x)(f) \wedge \mathcal{N}(y)(g) = \mathrm{int}_{ au} f(x) \wedge \mathrm{int}_{ au} g(y) = rac{3}{4} > rac{1}{2} = \mathrm{sup}(f \wedge g),$$

then $\mathcal{N}(x) \wedge \mathcal{N}(y)$ does not exist and hence (X, τ) is a regular space and it also is a GT_1 -space. Thus (X, τ) is a GT_3 -space.

Since in case of $y \notin \{x\} \in \tau'$ we get that any mapping $f: (X,\tau) \to (I_L,\Im)$ such that $f(y) = \overline{1}$ and $f(x) = \overline{0}$ is not L-continuous, then (X,τ) is not completely regular and thus it is not a $GT_{3\frac{1}{2}}$ -space.

Let $X \neq \emptyset$ be an arbitrary set. By an *L*-function family Φ on X, we mean the set of all *L*-real functions $f: X \to I_L$.

Let f and g be L-sets in X. Then a function $h: X \to I_L$ is said to separate f and g if $\overline{0} \le h(x) \le \overline{1}$ for all $x \in X$, $x_1 \le f$ implies $h(x) = \overline{1}$ and $y_1 \le g$ implies $h(y) = \overline{0}$. Moreover, if Φ is an L-function family on X, then the sets $f, g \in L^X$ are called Φ -separated or Φ -separable if there exists a function $h \in \Phi$ separating them.

Let (\ll_n) be a sequence of *L*-topogenous structures on *X* and (\prec_n) a sequence of *L*-topogenous structures on I_L . Then an *L*-real function $f: X \to I_L$ is called associated with the sequence (\ll_n) if for all $g, h \in L^{I_L}$, $g \prec_n h$ implies $(g \circ f) \ll_{n+1} (h \circ f)$ for every positive integer n.

Remark 2.2.1 Consider (\ll_n) and (\prec_n) are two sequences of two complementarily symmetric L-topogenous structures \ll and \prec on X and I_L , respectively. Let δ and

 δ^* be the *L*-proximities on *X* and I_L identified with \ll and \prec by (1.6), respectively. Then for a function $f: X \to I_L$ associated with the sequence \ll , we get from (1.6) that $g \, \overline{\delta^*} \, h$ implies $(g \circ f) \, \overline{\delta} \, (h \circ f)$ for all $g, h \in L^{I_L}$, which means that f is *L*-proximally continuous.

Here, to prove Urysohn's Lemma for our notion of $GT_{3\frac{1}{2}}$ -spaces, we need the following results.

In the proof of the following lemma we use the way of Császár [24].

Lemma 2.2.1 Suppose that \ll_n (n = 0, 1, 2, ...) are complementarily symmetric L-topogenous structures on a set X. If $F, G \in P(X)$ and $\chi_F \ll_0 \chi_G$, then there exists a function $f: X \to I_L$ associated with the sequence (\ll_n) for which $f(x) = \overline{0}$ for all $x \in F$ and $f(y) = \overline{1}$ for all $y \in G'$.

Proof. Since (\ll_n) is a sequence of binary relations in the crisp case and fulfill the conditions of being complementarily symmetric *L*-topogenous structures, then we can deduce that there is a recursion process in the crisp case similar to that in the usual case in [24] by defining the order relation \ll_m for $m \in R$ where R denotes the set of all non-negative dyadic rational numbers $(m = \frac{p}{2^n}; p = 0, \ldots, 2^n, n = 0, 1, \ldots)$. With this relation, the sets A(m) can be associated such that

(1)
$$A(0) = F$$
, $A(1) = G$;

(2)
$$A(\frac{p}{2^n}) \ll_m A(\frac{p+1}{2^n})$$
, $A(r) = X$ for all $r > 1$; $p = 0, \dots, 2^n, n = 0, 1, \dots$

From the properties of \ll_n we get $A(r) \subseteq A(s)$ for all $r, s \in R$, r < s.

Define the *L*-real function $f: X \to I_L$ by $f(x) = \bigwedge_{r \in R} \{\overline{r} \mid x \in A(r)\}$, then $f(x) = \overline{0}$ for all $x \in F$ and $f(y) = \overline{1}$ for all $y \in G'$.

Now, as in the usual case, f itself is an associated function with the sequence (\ll_n) and also f separates the sets χ_F and $\chi_{G'}$. Hence the proof is complete. \square

From (1.6), Lemma 2.2.1 and Remark 2.2.1 we can easily deduce the following.

Proposition 2.2.2 Let F and G be subsets of X with $\chi_F \overline{\delta} \chi_G$ in the L-proximity space (X, δ) and let Φ be the family of those L-proximally continuous functions h of (X, δ) into the L-proximity space (I_L, δ^*) for which $x \in X$ implies $\overline{0} \leq h(x) \leq \overline{1}$. Then χ_F and χ_G are Φ -separable.

Proof. Let \ll be the complementarily symmetric L-topogenous structure identified with δ . From (1.6), $\chi_F \bar{\delta} \chi_G$ implies that $\chi_F \ll \chi_G'$ and since $h \in \Phi$ is L-proximally continuous, then h, by means of Remark 2.2.1, is associated with \ll .