The general trends predicted by the extension of equation (2.5) considering the states of both bands (g.b., s.b.) observed below and above the crossing may be qualitatively reasonably up to even high spin $I^{\pi} \ge 28_s^+$.

III.2.2- - Method 2: VMI Predictions:-

In an attempt to obtain still better agreement with the experiment data, we have used equations (2.6, 2.8). Where θ_0 and C were determined for the ground state band below I_{cross} , they were substituted back in equation (2.6). The other two adjustable parameters of this model ⁽¹²⁾, E_0 and A, were determined for the super band and substituted in equation (2.8).

These two equations are solved for E corresponding to each value of I. it should be remember that the parameters θ_0 , C, E₀, A were determined so as to yield a best fit to the experimental energies. The values of the parameters obtained are listed in table (4).

The results obtained are listed in tables (5, 6) for (176-186Pt). The calculated energy levels are shown in figs (4-9) as compared with the observed energy levels for the chosen isotopes. A good agreement is shown.

It can be seen, in tables (5-6) that, the super band crosses the ground state band around spin 14⁺ for ¹⁷⁶Pt and ¹⁸⁴Pt, while the super band crosses the ground state band around spin 16⁺ for ¹⁷⁸Pt and ¹⁸²Pt, the super band crosses the ground state band around spin 18⁺ for ¹⁸⁰Pt and 12⁺ for ¹⁸⁶Pt.

This crossing may cause the backbending. The backbending phenomenon is currently interpreted as the band crossing of the ground state rotational band (g) and the spin aligned particle super band (s).

Especially $i_{\frac{13}{2}}$ neutrons are considered to be responsible for the backbending in these nuclei due to the large Coriolis force (29).

Table (4). The values of parameters θ_0 , C, E_0 , A

The nucleus	θ ₀ (Mev) ⁻¹	C (Mev) ⁻³	E ₀ (Mev)	A (Mev)	
¹⁷⁶ Pt	12.0	0.00107	1,290	0.00814	
¹⁷⁸ Pt	15.6	0.00111	1,410	0.00793	
¹⁸⁰ Pt	17.9	0.00150	1,638	0.00756	
¹⁸² Pt	15.6	0.00111	1,445	0.00780	
¹⁸⁴ Pt	14.6	0.00107	1.178	0.00785	
¹⁸⁶ Pt	10.2	0.00104	0,863	0.00933	

Table (5). The experimental yrast levels in ¹⁷⁶ Pt, ¹⁷⁸ Pt and ¹⁸⁰ Pt are given along with the calculated energies (method 2).

The nucleus 176 Pt		The nucleus ¹⁷⁸ Pt			The nucleus ¹⁸⁰ Pt			
I^{π}	E _{ex}	E_{th2}	I^{π}	E _{ex}	E _{th2}	Ι ^π	E _{ex}	E_{th2}
(g.b)	-		(g.b)		-	(g.b)		
2+	0.264	0.184	2+	0.170	0.159	2+	0.153	0.149
4 ⁺	0.564	0.489	4+	0.427	0.442	4 ⁺	0.411	0.432
6+	0.906	0.870	6 ⁺	0.765	0.804	6 ⁺	0.757	0.805
8 ⁺	1.306	1.307	8+	1.178	1.226	8+	1.182	1.246
10 ⁺	1.765	1.791	10 ⁺	1.661	1.696	10 ⁺	1.675	1.741
12 ⁺	2.277	2.314	12 ⁺	2.209	2.207	12+	2.229	2.283
14+	2.833	2.872	14+	2.814	2.754	14+	2.842	2.867
			16 ⁺	3.459	3.334	16 ⁺	3.505	3.487
						18 ⁺	4.252	4.141
(s.b)			(s.b)			(s.b)		
16+	3.423	3.470	18+	4.110	4.122	20+	4.804	4.811
18+	4.041	4.031	20+	4.754	4.741	22+	5.467	5.461
20+	4.690	4.656	22+	5.430	5.423	24+	6.178	6.171
22+	5.377	5.345	24+	6.159	6.168	26 ⁺	6.935	6.942
24+	6.107	6.099						1
26 ⁺	6.879	6.916						
	<u> </u>			<u> </u>		<u> </u>		

Method 2 is the variable moment of inertia (VMI)

Table (6). The experimental yrast levels in ¹⁸² Pt, ¹⁸⁴ Pt and ¹⁸⁶ Pt are given along with the calculated energies (method 2).

The nucleus 182 Pt			The nucleus ¹⁸⁴ Pt			The nucleus ¹⁸⁶ Pt		
I^{π}	E _{ex}	E _{th2}	I^{π}	E _{ex}	E_{th2}	I^{π}	E _{ex}	E _{th2}
(g.b)			(g.b)			(g.b)		
2+	0.155	0.159	2+	0.163	0.165	2+	0.192	0.198
4+	0.419	0.442	4 ⁺	0.436	0.453	4 ⁺	0.490	0.514
6 ⁺	0.774	0.804	6+	0.798	0.817	6+	0.877	0.902
8+	1.205	1.226	8+	1.230	1.240	8 ⁺	1.342	1.346
10 ⁺	1.698	1.696	10 ⁺	1.707	1.710	10+	1.857	1.835
12 ⁺	2.242	2.207	12+	2.204	2.221	12+	2.336	2.362
14+	2.832	2.754	14+	2.726	2.767	}		
16 ⁺	3.461	3.334				1		
(s.b)			(s.b)			(s.b)		
18+	4.095	4.112	16 ⁺	3.282	3.313	14 ⁺	2.825	2.823
20 ⁺	4.730	4.720	18+	3.869	3.862	16 ⁺	3.394	3.401
22 ⁺	5.405	5.391	20 ⁺	4.493	4.475	18 ⁺	4.051	4.055
24+	6.129	6.124	22 ⁺	5.167	5.150	20 ⁺	4.788	4.783
26 ⁺	6.907	6.919	24 ⁺	5.897	5.888	22+	5.597	5.585
			26 ⁺	6.686	6.688	24+	6.463	6.463
			28+	7.535	7.552	26 ⁺	7.407	7.415
						Ţ		

Method 2 is the variable moment of inertia (VMI)

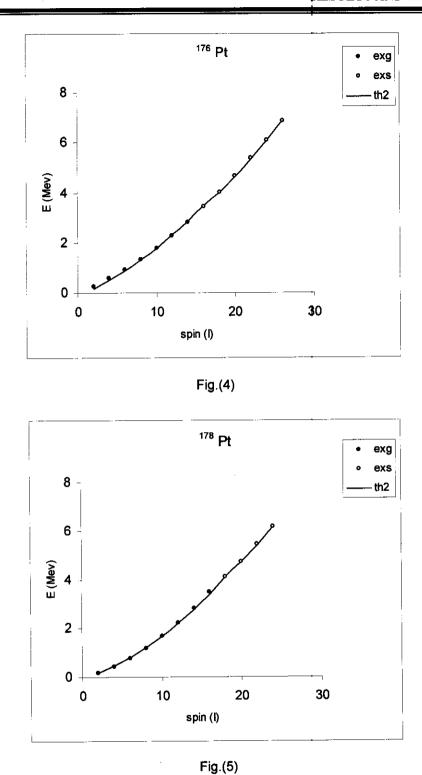
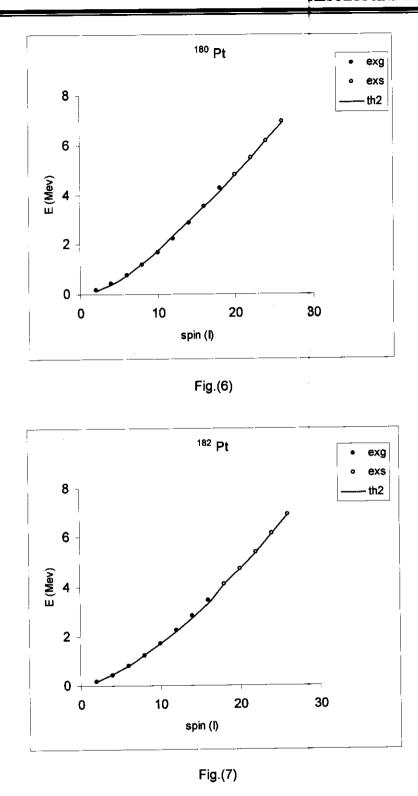



Fig. 4, 5 : Plot of the level excitation energies (yrast sequences) as a function of spin for ¹⁷⁶Pt, ¹⁷⁸Pt by (method 2).

Fig. 6, 7: Plot of the level excitation energies (yrast sequences) as a function of spin for ¹⁸⁰Pt, ¹⁸²Pt by (method 2).

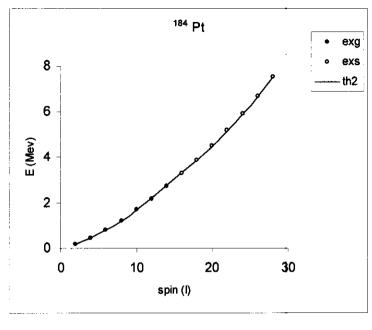


Fig.(8)

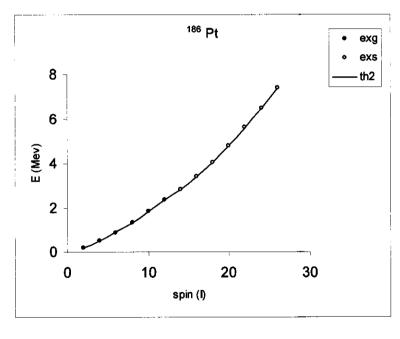


Fig.(9)

Fig. 8, 9: Plot of the level excitation energies (yrast sequences) as a function of spin for ¹⁸⁴Pt, ¹⁸⁶Pt by (method 2).