You are in:Home/Publications/Copy-Move Forgery Detection Based on Automatic Threshold Estimation

Ass. Lect. Aya Essam Abdelmaksoud Moghawry :: Publications:

Title:
Copy-Move Forgery Detection Based on Automatic Threshold Estimation
Authors: Aya Hegazi; Ahmed Taha; Mazen M Selim
Year: 2019
Keywords: Clustering Evaluation Measures, Copy-Move Detection, Image Forensics, Keypoint-Based Methods, Multiple- Copied Matching
Journal: International Journal of Sociotechnology and Knowledge Development (IJSKD).
Volume: 12
Issue: 1
Pages: 1-23
Publisher: Not Available
Local/International: International
Paper Link: Not Available
Full paper Aya Essam Abdelmaksoud Moghawry_Copy-Move-Forgery-Detection-Based-on-Automatic-Threshold-Estimation.pdf
Supplementary materials Not Available
Abstract:

Recently,usersandnewsfollowersacrosswebsitesfacemanyfabricatedimages.Moreover,itgoes farbeyondthattothepointofdefamingorimprisoningaperson.Hence,imageauthenticationhas becomeasignificantissue.Oneofthemostcommontamperingtechniquesiscopy-move.Keypoint- basedmethodsareconsideredasaneffectivemethodfordetectingcopy-moveforgeries.Insuch methods,thefeatureextractionprocessisfollowedbyapplyingaclusteringtechniquetogroupspatially closekeypoints.Mostclusteringtechniqueshighlydependontheexistenceofaspecificthreshold toterminatetheclustering.Determinationofthemostsuitablethresholdrequiresahugeamountof experiments.Inthisarticle,acopy-moveforgerydetectionmethodisproposed.Theproposedmethod isbasedonautomaticestimationoftheclusteringthreshold.Thecutoffthresholdofhierarchical clusteringisestimatedautomaticallybasedonclusteringevaluationmeasures.Experimentalresults testedonvariousdatasetsshowthattheproposedmethodoutperformsotherrelevantstate-of-the-art methods.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus