Metric learning has significantly improved machine learning applications such as face re-identification and image classification using K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) classifiers. However, to the best of our knowledge, it has not been investigated yet, especially for the multimodal biometric recognition problem in immigration, forensic and surveillance applications with uncontrolled ear datasets. Therefore, it is interesting and very attractive to propose a novel framework for multimodal biometric recognition based on Learning Distance Metric (LDM) via kernel SVM. This paper considers metric learning for SVM by investigating a hybrid Learning Distance Metric and Directed Acyclic Graph SVM (LDM-DAGSVM) model for multimodal biometric recognition, where LDM and DAGSVM are two emerging techniques in dealing with classification problems. Different from existing multimodal biometric recognition methods, the proposed approach aims to learn Mahalanobis distance metric via kernel SVM to maximize the inter-class variations and minimize the intra-class variations, simultaneously. Experimental results on the uncontrolled datasets such as AR face and AWE ear datasets show that the proposed approach achieves competitive performance compared with models working on individual modalities and overperforms the state-of-the-art multimodal methods. The proposed model achieves five-fold classification accuracy around 99.85 % for the face and ear images.
|