Node localization is one of the major challenges that exist in underwater communication. Various techniques exist for terrestrial networks, while few of them are applicable in underwater networks due to the dynamic characteristic of the underwater channels, e.g., the lack of global positioning system (GPS) coverage under the water surface. Moreover, assorted environmental properties affect almost all employed communication techniques. In this letter, we propose an environmental-aware positioning system by considering the variations of the underwater speed of sound according to the dynamic changes in the physical properties of the seawater, such as temperature, salinity, and pressure, besides the internal waves' effects. The proposed system employs the received signal strength (RSS) technique in estimating the distances between the network nodes. Moreover, we examine the application of various dynamic responses neural networks (NNs) in predicting the underwater node position, such as the feedforward, recurrent, time delay, and distributed delay NNs. The results show that the NN-based prediction models enhance the performance of the positioning system and could achieve small prediction errors in the range of 0.002 for both training and testing patterns. |