You are in:Home/Publications/Effect of Quercetin Supplementation in Extender on Sperm Kinematics, Extracellular Enzymes Release, and Oxidative Stress of Egyptian Buffalo Bulls Frozen–Thawed Semen

Dr. Ahmed Reda Mohamed Hassan El-Khawagah :: Publications:

Title:
Effect of Quercetin Supplementation in Extender on Sperm Kinematics, Extracellular Enzymes Release, and Oxidative Stress of Egyptian Buffalo Bulls Frozen–Thawed Semen
Authors: Ahmed R. M. El-Khawagah; Mohamed M. M. Kandiel; Haney Samir
Year: 2020
Keywords: CASA, Egyptian buffalo, frozen semen, oxidative stress markers, quercetin, sperm kinetics
Journal: Frontiers in Veterinary Science
Volume: 7
Issue: Not Available
Pages: Not Available
Publisher: Frontiers in Veterinary Science
Local/International: International
Paper Link:
Full paper Ahmed Reda Mohamed Hassan El-Khawagah_quercetin paper.pdf
Supplementary materials Not Available
Abstract:

Buffalo spermatozoa are more sensitive for cryopreservation compared to other species. This study aimed to evaluate the consequences of quercetin against cryodamage of buffalo frozen–thawed spermatozoa characteristics. Semen of Egyptian bulls (n = 4) was extended in OptiXcell extender incorporated with quercetin at 0 (control), 2.5, 5.0, 10.0, 20.0, 40.0, and 80.0μM before cryopreservation. Frozen–thawed semen was evaluated for sperm motility by computer-assisted sperm analyzer (CASA), viability, morphology, membrane, and acrosome integrities. The kinematics parameters including average path velocity (VAP; μm/s), straight linear velocity (VSL; μm/s), curvilinear velocity (VCL; μm/s), amplitude of lateral head displacement (ALH; μm), beat cross frequency (BCF; Hz), linearity [LIN, (VSL/VCL) × 100], and straightness [STR, (VSL/VAP) × 100] were assessed. The sperm-free extender was evaluated for aspartate aminotransferase (AST), alanine aminotransferase (ALT), and H2O2. Homogenized sperm cells were evaluated for oxidative stress biomarkers [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX)], and lipid peroxidation [malondialdehyde (MDA)]. The highest values of total motility, progressive motility, viability, intact acrosome, and membrane integrity substantially improved with 10μMof quercetin. STR (%) was substantially low (P < 0.01), and VCL (μm/s) and ALH (μm) were markedly high (P < 0.05) in 10μM of quercetin. The outflow of ALT enzyme to extracellular fluid was lower with 10μMof quercetin (P < 0.001) and higher at 2.5μM of quercetin. The spermatozoa leaked AST was markedly lower at 5.0, 10 (P < 0.001) and 20μM (P < 0.05) of quercetin. The activity of antioxidant enzymes was eminently low at all quercetin concentrations, and this was accompanied by the decrease in H2O2 in the media. SOD activity at 10–80μM, CAT at 5.0–40μM, and GPX at 2.5–80.0μM of quercetin in spermatozoa were substantially low. MDA level significantly (P < 0.001) decreased at all quercetin concentrations. In conclusion, the incorporation of quercetin at the level of 10μM is promising in improving buffalo semen characteristics and lower the freezing–thawing oxidative stress.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus