You are in:Home/Publications/Spectrophotometric determination of gatifloxacin in pure form and in pharmaceutical formulation.

Prof. Alaa El-Sayed Ahmed Ahmed Amin :: Publications:

Spectrophotometric determination of gatifloxacin in pure form and in pharmaceutical formulation.
Authors: A. S. Amin, A.A. Gouda, R. El-Sheikh, F. Zahran.
Year: 2007
Keywords: Not Available
Journal: Not Available
Volume: Not Available
Issue: Not Available
Pages: Not Available
Publisher: Not Available
Local/International: International
Paper Link: Not Available
Full paper Alaa El-Sayed Ahmed Ahmed Amin_-103.pdf
Supplementary materials Not Available

Simple, rapid, and extractive spectrophotometric methods were developed for the determination of gatifloxacin (GT) in bulk and pharmaceutical dosage form. These methods are based on the formation of yellow ion-pair complexes between the basic nitrogen of the drug and three sulphonphthalein acid dyes, namely; bromocresol green (BCG), bromocresol purple (BCP), bromophenol blue (BPB) and bromothymol blue (BTB) in phthalate buffer pH 3.0, 3.4 and 3.2, using BCG, BCP and (BPB or BTB), respectively. The formed complexes were extracted with chloroform and measured at 415, 417, 412 and 414 nm for BCG, BPB, BCP and BTB, respectively. The analytical parameters and their effects on the reported systems are investigated. The reactions were extremely rapid at room temperature and the absorbance values remains unchanged at 48 h for all reactions. Beer's law was obeyed in the ranges 2.0-20, 2.0-14 and 2.0-16 microg mL(-1) for BCG, BCP and (BPB or BTB), respectively. The composition of the ion pairs was found 1:1 by Job's method. Beer's law validation, accuracy, precision, limits of detection, limits of quantification. The proposed methods have been applied successfully for the analysis of the drug bulk form and its dosage form. The results were in good agreement with those obtained by the official and reported methods.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus