You are in:Home/Publications/Utilization of ion exchanger and spectrophotometry for assaying amoxicillin and flucloxacillin in dosage form

Prof. Alaa El-Sayed Ahmed Ahmed Amin :: Publications:

Title:
Utilization of ion exchanger and spectrophotometry for assaying amoxicillin and flucloxacillin in dosage form
Authors: Hisham M. Aly, Alaa S. Amin
Year: 2007
Keywords: Not Available
Journal: Not Available
Volume: Not Available
Issue: Not Available
Pages: Not Available
Publisher: Not Available
Local/International: International
Paper Link: Not Available
Full paper Not Available
Supplementary materials Not Available
Abstract:

A simple, rapid, accurate sensitive spectrophotometry procedure for the determination of amoxycillin (Amox) and flucloxacillin (Fluclox) in bulk samples and in dosage forms are developed. The procedure involves the use of sudan III as chromogenic reagent to produce a violet colored ion-pair with an absorption maximum at 566nm. The ion-pair complexes obey Beer's law and are suitable for the quantitative determination of 0.2-22 and 0.4-25microg/ml of Amox, and Fluclox, respectively. The optimization of different experimental conditions is described in which Amox react after 3min at 25+/-1 degrees C, whereas Fluclox take 10min at 60+/-1 degrees C. Tin(IV) antimonite ion exchanger was utilized to separate a mixture of Amox and Fluclox trihydrate. A column chromatographic technique was applied to separation the antibiotics mixture. Column of 0.3mm diameter and bed height of 3cm of the exchanger was used and the frontal elution technique was utilized. The separation factor for Fluclox and Amox was found to be 2.76. Tin(IV) antimonite ion exchanger exhibit promising feature that can be utilized as stationary phase in either HPLC or HPTLC techniques. The procedure described was applied successfully to determine Amox and Fluclox. The obtained results were compared the official methods. The proposed procedure was successfully applied to determine Amox and Fluclox in their pharmaceutical formulations.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus