You are in:Home/Publications/ Geometric objects associated with the fundamental connections in Finsler geometry

Dr. Amr Soleiman Mahmoud Hassan :: Publications:

Title:
Geometric objects associated with the fundamental connections in Finsler geometry
Authors: Nabil L. Youssef, S. H. Abed and A. Soleiman
Year: 2010
Keywords: Regular connection; Barthel connection; Cartan connection; Berwald connection; Chern connection; Hashiguchi connection; Torsion tensor field; Curvature tensor field.
Journal: J. Egypt. Math. Soc.
Volume: 18
Issue: 1
Pages: 67-90
Publisher: Not Available
Local/International: Local
Paper Link: Not Available
Full paper Amr Soleiman Mahmoud Hassan_GEOMETRIC OBJECTS ASSOCIATED WITH.pdf
Supplementary materials Not Available
Abstract:

The aim of the present paper is to provide an intrinsic investigation of the properties of the most important geometric objects associated with the fundamental linear connections in Finsler geometry. We investigate intrinsically the most general relations concerning the torsion tensor fields and the curvature tensor fields associated with a given regular connection on the pullback bundle of a Finsler manifold. These relations, in turn, play a key role in obtaining other interesting results concerning the properties of the most important geometric objects associated with the fundamental canonical linear connections on the pullback bundle of a Finsler manifold, namely, the Cartan connection, the Berwald connection, the Chern (Rund) connection and the Hashiguchi connection. For the sake of completeness and for comparison reasons, we provide an appendix presenting a global survey of canonical linear connections in Finsler geometry and the fundamental geometric objects associated with them.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus