You are in:Home/Publications/Vanadium Oxide/Graphene Nanoplatelet as a Cathode Material for Mg-Ion Battery‏

Assist. Atef El-Sayed Ahmed :: Publications:

Title:
Vanadium Oxide/Graphene Nanoplatelet as a Cathode Material for Mg-Ion Battery‏
Authors: E Sheha, MH Makled, Walaa M Nouman, A Bassyouni, S Yaghmour, S Abo-Elhassan
Year: 2016
Keywords: Magnesium Batteries, Vanadium Oxide, Graphene, Conductivity
Journal: Graphene
Volume: 5
Issue: 4
Pages: 178-188
Publisher: Scientific Research Publishing
Local/International: International
Paper Link: Not Available
Full paper Atef El-Sayed Ahmed_Vanadium_OxideGraphene_Nanoplatelet_as_a_Cathode_M.pdf
Supplementary materials Not Available
Abstract:

The aim of the present work is to introduce a high performance cathode for magnesium-ion batteries. A simple ball mill process is employed to synthesize (V2O5)1−x (Graphene Nanoplatelets (GNP))x nanocomposite, (where x = 0, 5, 10, 15, 20 and 25 wt.% GNP). The synthesized samples are characterized using scanning electron microscope (SEM), X-ray diffraction (XRD) technique, impedance spectroscopy, cyclicvoltammetry and charge-discharge test. The maximum conductivity of the investigated samples was found to be 6 × 10−1 S/cm for optimum composite film (25 wt% GNP) at room temperature. Room temperature rechargeable magnesium batteries are constructed from Mg as anode material, (V2O5)1−x(GNP)x as a cathode material and the simple non-aqueous electrolyte based MgNO3∙6H2O. Mg/V2O5 cells employing as-prepared electrolyte exhibit initial discharge capacity ∼100 mAhg−1 while Mg/(V2O5/GNP (x = 25t.%)) cathode produces a lower initial capacity of ∼90 mAhg−1. The high initial discharge capacity of V2O5 can be attributed to the presence of a large (001) interlayer spacing (∼11.53 Å) for facile Mg+ insertion/extraction.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus