You are in:Home/Publications/Geometric Correction of High Resolution Satellite Imagery Using Hybrid Non parametric Model

Prof. Ayman Mohamed Rashad Elshehaby :: Publications:

Geometric Correction of High Resolution Satellite Imagery Using Hybrid Non parametric Model
Authors: Ahmed Habib1, Zainab Weshahy1, Mohamed El-Ghazaly1, Ayman El-Shehaby2.
Year: 2018
Keywords: Geometric Correction, Ortho-rectification, High Resolution Satellite Imagery, Artificial Neural Networks.
Journal: Australian Journal of Basic and Applied Sciences
Volume: Not Available
Issue: Not Available
Pages: Not Available
Publisher: AENSI
Local/International: International
Paper Link: Not Available
Full paper Not Available
Supplementary materials Not Available

Updating geographic information using high resolution satellite images has become a major competitor to the traditional photogrammetric works. This research presents a new technique to achieve geometric correction, starting with automatic satellite imagery matching with digital photogrammetric data, after outliers' exclusion. Matched points are ortho-corrected using DDTM. A downward Multi-layer perceptron neural networks technique will be used in the process of network training, instead of using the classic upward technique. In the new training process image coordinates were used as inputs and their corresponding ground coordinates were used as outputs. The trained network was used in predicting ground coordinates of a set of new regularized image points in the same space domain of the matched point dataset. Rational function model (RFM) will be implemented using regularized ortho-corrected points as GCPs in order to reach the final relationship parameters between satellite imagery and the 3D object coordinates. The new technique led to an improvement of the accuracy by damping down the error to 0.67 the error resulting from the conventional RFM model.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus