You are in:Home/Publications/Integrated petrophysical and sedimentological study of the Middle Miocene Nullipore Formation (Ras Fanar Field, Gulf of Suez, Egypt): An approach to volumetric analysis of reservoirs

Dr. Emad Samir Sayed Sallam :: Publications:

Title:
Integrated petrophysical and sedimentological study of the Middle Miocene Nullipore Formation (Ras Fanar Field, Gulf of Suez, Egypt): An approach to volumetric analysis of reservoirs
Authors: Afife, M., Sallam, E.S., Faris, M.,
Year: 2017
Keywords: Not Available
Journal: Journal of African Earth Sciences
Volume: 134
Issue: Not Available
Pages: 526-548
Publisher: Elsevier
Local/International: International
Paper Link:
Full paper Emad Samir Sayed Sallam_Paper 1- Ras Fanar (JAES, 1.6 IF)_Page_01.jpg
Supplementary materials Not Available
Abstract:

This study aims to integrate sedimentological, log and core analyses data of the Middle Miocene Nullipore Formation at the Ras Fanar Field (west central Gulf of Suez, Egypt) to evaluate and reconstruct a robust petrophysical model for this reservoir. The Nullipore Formation attains a thickness ranging from 400 to 980 ft and represents a syn-rift succession of the Middle Miocene marine facies. It consists of coralline-algal-reefal limestone, dolomitic limestone and dolostone facies, with few clay and anhydrite intercalations. Petrographically, seven microfacies types (MF1 to MF7) have been recognized and assembled genetically into three related facies associations (FA1 to FA3). These associations accumulated in three depositional environments: 1) peritidal flat, 2) restricted lagoon, and 3) back-shoal environments situated on a shallow inner ramp (homoclinal) setting. The studied rocks have been influenced by different diagenetic processes (dolomitization, cementation, compaction, authigenesis and dissolution), which led to diminishing and/or enhancing the reservoir quality. Three superimposed 3rd-order depositional sequences are included in the Nullipore succession displaying both retrogradational and aggradational packages of facies. Given the hydrocarbon potential of the Nullipore Formation, conventional well logs of six boreholes and core analyses data from one of these wells (RF-B12) are used to identify electrofacies zones of the Nullipore Formation. The Nullipore Formation has been subdivided into three electrofacies zones (the Nullipore-I, Nullipore-II, and Nullipore-III) that are well-correlated with the three depositional sequences. Results of petrographical studies and log analyses data have been employed in volumetric calculations to estimate the amount of hydrocarbon-in-place and then the ultimate recovery of the Nullipore reservoir. The volumetric calculations indicate that the total volume of oil-in-place is 371 MMSTB at 50% probability (P50), whereas the total recoverable oil is 148.5 MMSTB at P50. The volumetric calculations for the Nullipore zones match the production data indicating a good simulation for the reservoir productivity through the petrophysical parameters. Comparison of the volumetric calculations of the oil and the cumulative production of the Ras Fanar Oil Field indicates remaining reserves of less than 30% of the total recoverable oil. Therefore, the search for unconventional and/or deeper reservoirs at other water contacts is recommended.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus